Researchers clear up Alzheimer's plaques in mice

May 30, 2008,

Blocking a common immune system response cleared up plaques associated with Alzheimer’s Disease and enabled treated mice to recover some lost memory, Yale University researchers report Friday in the journal Nature Medicine.

Researchers hope the new approach may one day overcome one of the biggest obstacles to development of new dementia medications – the difficulty in finding drugs that can safely cross the blood-brain barrier.

The results of the research surprised the scientists working in the lab of Richard Flavell, senior author of the paper, chairman of the Department of Immunobiology at Yale and investigator with the Howard Hughes Medical Institute. Flavell’s team originally thought that blocking the immune system molecule TGF-â(or transforming growth factor), might actually increase the buildup of amyloid plaques associated with Alzheimer’s Disease

Earlier studies had shown that Alzheimer’s patients tend to have elevated amounts of TGF-â, which plays a key role in activating immune system response to injury. Some had thought the presence of the molecule was simply an attempt to quiet the inflammatory response caused by a buildup of plaque.

Instead, the team found that as much as 90 percent of the plaques were eliminated from the brains of mice genetically engineered to block TGF-â in the peripheral immune cells.

It was like a vacuum cleaner had removed the plaques," Flavell said.

When the TGF-â pathway was interrupted in mice engineered to have Alzheimer’s, the mice showed an improved ability to perform some tests, including navigating mazes when compared to mice without TGF-â blocked. Scientists also found lower levels of other biological markers associated with the dementia.

When TGF-â was blocked, the immune system seemed to unleash immune cells known as peripheral macrophages. The macrophages passed through the blood-brain barrier and surrounded the neurons and plaques in the brains of mice. “If results from our study in mice engineered to develop Alzheimer’s-like dementia are supported by studies in humans, we may be able to develop a drug that could be introduced into the bloodstream to cause peripheral immune cells to target the amyloid plaques," said Terrence Town, lead author of the study.

Source: Yale University

Explore further: Fast food makes the immune system more aggressive in the long term

Related Stories

Fast food makes the immune system more aggressive in the long term

January 12, 2018
The immune system reacts similarly to a high fat and high calorie diet as to a bacterial infection. This is shown by a recent study led by the University of Bonn. Particularly disturbing: Unhealthy food seems to make the ...

Inhibition by an immunostimulator

November 13, 2017
The receptor CD27 found on the cell surface of certain types of immune cells is required for the production of so-called regulatory T cells in the thymus, that limit the development of atherosclerotic plaques.

Research toward world's first vaccine for heart disease advanced

June 17, 2014
Research toward the world's first vaccine for heart disease continues to advance at the La Jolla Institute for Allergy and Immunology, with researchers demonstrating significant arterial plaque reduction in concept testing ...

Alzheimer's gene poses both risk and benefits

October 9, 2017
Scientists drilling down to the molecular roots of Alzheimer's disease have encountered a good news/bad news scenario. A major player is a gene called TREM2, mutations of which can substantially raise a person's risk of the ...

New target identified in fight against Alzheimer's, multiple sclerosis

March 2, 2015
Highlighting a potential target in the treatment of multiple sclerosis (MS) and Alzheimer's disease, new research suggests that triggering a protein found on the surface of brain cells may help slow the progression of these ...

Protein block stops vascular damage in diabetes

June 5, 2013
Researchers at Lund University in Sweden have discovered how to stop the destructive process that leads to cardiovascular disease in diabetic laboratory animals.

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gmurphy
5 / 5 (1) May 31, 2008
it's so strange that blocking a part of the immune system would have such a beneficial effect, lets hope that this result extends to humans.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.