New blood test reveals risk for metabolic syndrome

May 20, 2008

University of Minnesota researchers have discovered that people with high oxidation levels of the low-density lipoprotein (LDL) particle that carries cholesterol throughout the blood are much more likely to develop metabolic syndrome – which can lead to a considerably increased risk of developing heart disease.

Researchers measured oxidized LDL in more than 2,000 generally healthy people aged 33-45 (average age 40) in an ongoing study, called CARDIA. After deleting those with metabolic syndrome, they followed the remaining 1,889 for five years. Those with the highest levels of oxidized LDL had 3.5 times the risk of developing metabolic syndrome five years later.

The findings were published today in the Journal of the American Medical Association.

These findings are especially important for prevention of heart disease since the participants in this study were relatively young and few had any signs of it. Although neither diet, physical activity, nor smoking were directly studied, this finding bolsters the belief that all of these lifestyle factors need attention from youth onward to prevent heart disease.

“Smoking is one of the most common sources of oxidative stress. Optimal diet and an active lifestyle can keep the antioxidant defense system in balance and prevent oxidized LDL from forming,” said David Jacobs, Ph.D., principal investigator of the study, and a professor in the School of Public Health.

In some people, cholesterol in the blood tends to deposit on arterial walls, leading to a building of plaque that causes atherosclerosis. Atherosclerosis damages artery walls, impedes flow of blood, and eventually causes heart attack. But cholesterol is also an important component of all cell walls and is therefore central to life. So why does excess cholesterol in the blood have a bad effect on health, when cholesterol itself is a fundamental building block of life"

Because cholesterol is a fat (lipid) that does not dissolve in blood, the body has devised a system of enveloping cholesterol in protein to transport it. These small bodies found in the blood are called lipoprotein particles. Many scientists believe that oxidation of the lipoprotein particles that carry cholesterol in the blood may answer the question of why cholesterol does damage. Oxidation is necessary to processing of oxygen and fueling the body. However, free radicals, formed as a product of oxidation, can be dangerous.

While free radicals can be used by the body to fight bacterial infections, if they are not kept in tight balance they can damage important molecules in the body. In particular, LDL particles are highly prone to oxidative damage (oxidized LDL). LDL particles are constantly zipping in and out of arterial walls, delivering cholesterol for needed biologic functions. If oxidized, the particle has trouble leaving the arterial walls, white cells are called in to attack the “invader,” and before long an atherosclerotic plaque is developing, with the ultimate risk of heart attack.

With collaborators from Belgium and South Korea, University of Minnesota researchers have provided new information about how the process works.

Metabolic syndrome is a constellation of factors that predisposes people to conditions such as heart disease and diabetes. It includes obesity, mild glucose abnormalities, elevated blood pressure, and adverse alterations in blood lipids. It is complementary to other heart disease risk factors, such as smoking. Those with metabolic syndrome are at considerably increased risk for heart disease.

The blood test for oxidized LDL was invented by the first author of the paper, Professor Paul Holvoet, Ph.D., of Katholieke Universiteit, Leuven, in Belgium.

“If LDL particles are severely damaged, the body recognizes them and excretes them. But minimal oxidation is not as easily recognized. The test we devised identifies minimally oxidized LDL particles, which we theorized were the ones that are most likely to be incorporated into atherosclerotic plaque and cause health problems,” Holvoet said. “The finding that oxidized LDL relates particularly to metabolic syndrome advances our understanding of how the atherosclerotic process works.”

Source: University of Minnesota

Explore further: Yoga and aerobic exercise together may improve heart disease risk factors

Related Stories

Yoga and aerobic exercise together may improve heart disease risk factors

October 19, 2017
Heart disease patients who practice yoga in addition to aerobic exercise saw twice the reduction in blood pressure, body mass index and cholesterol levels when compared to patients who practiced either Indian yoga or aerobic ...

Alcohol use affects levels of cholesterol regulator through epigenetics

September 20, 2017
In an analysis of the epigenomes of people and mice, researchers at Johns Hopkins Medicine and the National Institutes of Health report that drinking alcohol may induce changes to a cholesterol-regulating gene.

Mitochondrial DNA could predict risk for sudden cardiac death, heart disease

October 11, 2017
Johns Hopkins researchers report that the level, or "copy number," of mitochondrial DNA—genetic information stored not in a cell's nucleus but in the body's energy-creating mitochondria—is a novel and distinct biomarker ...

Do ketogenic diets help you lose weight?

September 20, 2017
Is a ketogenic diet effective for weight loss? The answer depends on whether it achieves a reduction in total kilojoule intake or not.

Women with heart disease less likely to reach treatment targets than men

September 20, 2017
Women with coronary heart disease are less likely to achieve treatment targets than men, finds a study published by the journal Heart today.

Scientists have found another reason for children to eat their green leafy vegetables

October 2, 2017
A study of 766 otherwise healthy adolescents showed that those who consumed the least vitamin K1- found in spinach, cabbage, iceberg lettuce and olive oil - were at 3.3 times greater risk for an unhealthy enlargement of the ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.