Does the brain control muscles or movements?

May 7, 2008

One of the major scientific questions about the brain is how it can translate the simple intent to perform an action—say, reach for a glass—into the dynamic, coordinated symphony of muscle movements required for that action. The neural instructions for such actions originate in the brain’s primary motor cortex, and the puzzle has been whether the neurons in this region encode the details of individual muscle activities or the high-level commands that govern kinetics—the direction and velocity of desired movements.

Now, Robert Ajemian and his colleagues, analyzing muscle function in monkeys, have created a mathematical model that captures the control characteristics of the motor cortex. It enabled the researchers to better sort out the “muscles-or-movement” question.

The researchers described their model in an article in the May 8, 2008, issue of the journal Neuron, published by Cell Press.

Researchers have been thwarted in their efforts to measure and model the neural control of complex motions because muscle forces and positions constantly change during such motions. Also, the position sensors, called proprioceptors, in joints and muscles feed back constantly changing signals to the neurons of the motor cortex.

Ajemian and colleagues overcame these complexities by simplifying the experimental design. Rather than asking monkeys to carry out complex movements, they trained the animals to push on a joystick in different, specified ways to move a cursor on a screen to a desired target. This use of isometric force greatly simplified the measurements the researchers needed to make to define muscle and joint action.

As the monkeys carried out the isometric tasks, the researchers analyzed the patterns of muscle activations that corresponded with the isometric forces in different directions and at different postures. They then developed a model that enabled them to test hypotheses about the relationship between neuronal activity that they measured in the animals’ motor cortex and the resulting actions.

They said that their “joint torque model can be tested at the resolution of single cells, a level of resolution that, to our knowledge, has not been attained previously.”

They concluded that their model “suggests that neurons in the motor cortex do encode the kinetics of motor behavior.”

“This model represents a significant advance, because it is strikingly successful in accounting for the way that the responses of individual [primary motor cortex] neurons vary with posture and force direction,” commented Bijan Pesaran and Anthony Movshon in a preview of the article in the same issue of Neuron.

“The results of Ajemian et al’s analysis provide strong evidence that it is useful to think of the output of [primary motor cortex] neurons in terms of their influence on muscles. Their model, in effect, defines a ‘projection field’ for each [primary motor cortex] neuron that maps its output into a particular pattern of muscle actions.”

Pesaran and Movshon commented that “perhaps we should set aside the somewhat artificial dichotomy between muscles and movements, between the purpose and its functional basis, and recognize that the activation pattern of motor cortex neurons does two things—it specifies for the peripheral motor system both what to do and how to do it.”

Source: Cell Press

Explore further: Therapeutic antibodies protected nerve–muscle connections in a mouse model of Lou Gehrig's disease

Related Stories

Therapeutic antibodies protected nerve–muscle connections in a mouse model of Lou Gehrig's disease

February 20, 2018
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, causes lethal respiratory paralysis within several years of diagnosis. There are no effective treatments to slow or halt this devastating disease. Mouse ...

Scientists explain how the brain can lead to Olympic gold

February 9, 2018
Any athlete who's made it to the Olympics has speed or strength or whatever physical skills it takes to lead the world in their sport. But Johns Hopkins University scientists say those who ultimately bring home gold have ...

'Off the shelf' living artificial tissues could repair severe nerve injuries

February 13, 2018
Severe nerve damage has been successfully repaired in the laboratory using a new living artificial nerve tissue developed by UCL, ReNeuron and Sartorius Stedim Biotech.

Simple molecule could prevent, alleviate pre-diabetes

February 7, 2018
Restoring levels of coenzyme Q10 (CoQ), a key molecule in energy production in cells, could overcome insulin resistance or pre-diabetes—a precursor to type 2 diabetes and cardiovascular disease.

Researchers pinpoint pathway to muscle paralysis

December 5, 2017
Researchers at the University of Arizona have taken an essential step forward in the quest to find the cause of amyotrophic lateral sclerosis, also known as ALS or Lou Gehrig's disease. In the cells of flies, mice and humans ...

Network model of the musculoskeletal system predicts compensatory injuries

January 18, 2018
While detailed anatomical studies of the musculoskeletal system have existed since the days of Leonardo da Vinci, new research led by Danielle Bassett at The University of Pennsylvania's School of Engineering and Applied ...

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.