Crystal (eye) ball: Study says visual system equipped with 'future seeing powers'

May 15, 2008
Orbison Illusion
In the Orbison geometric illusion, the squares closer to the center of the image seem larger than those on the outside of the drawing. Evolution has seen to it that drawings like this elicit in us premonitions of the near future. Credit: Rensselaer/Changizi

Catching a football. Maneuvering through a room full of people. Jumping out of the way when a golfer yells "fore." Most would agree these seemingly simple actions require us to perceive and quickly respond to a situation. Assistant Professor of Cognitive Science at Rensselaer Polytechnic Institute Mark Changizi argues they require something more—our ability to foresee the future.

It takes our brain nearly one-tenth of a second to translate the light that hits our retina into a visual perception of the world around us. While a neural delay of that magnitude may seem minuscule, imagine trying to catch a ball or wade through a store full of people while always perceiving the very recent (one-tenth of a second prior) past. A ball passing within one meter of you and traveling at one meter per second in reality would be roughly six degrees displaced from where you perceive it, and even the slowest forward-moving person can travel at least ten centimeters in a tenth of a second.

Changizi claims the visual system has evolved to compensate for neural delays, allowing it to generate perceptions of what will occur one-tenth of a second into the future, so that when an observer actually perceives something, it is the present rather than what happened one-tenth of a second ago. Using his hypothesis, called “perceiving-the-present,” he was able to systematically organize and explain more than 50 types of visual illusions that occur because our brains are trying to perceive the near future. His findings are described in May-June issue of the journal Cognitive Science.

“Illusions occur when our brains attempt to perceive the future, and those perceptions don’t match reality. There has been great success at discovering and documenting countless visual illusions. There has been considerably less success in organizing them,” says Changizi, who is lead author on the paper. “My research focused on systematizing these known incidents of failed future seeing into a ‘periodic table’ of illusion classes that can predict a broad pattern of the illusions we might be subject to.”

More than meets the eye

To picture one, think of the Hering illusion, which looks like a bike spoke with two vertical lines drawn on either side of the center vanishing point. Although the lines are straight, they seem to bow out away from the vanishing point. The optical illusion occurs because our brains are predicting the way the underlying scene would project in the next moment if we were moving in the direction of the vanishing point.

“Evolution has seen to it that geometric drawings like this elicit in us premonitions of the near future,” says Changizi. “The converging lines toward a vanishing point are cues that trick our brains into thinking we are moving forward—as we would in the real world, where the door frame seems to bow out as we move through it—and we try to perceive what that world will look like in the next instant.”

Beyond geometric, Changizi was able to identify 27 other classes of illusions. He organized them into 28 predictable categories classified on a matrix that distributes them among four columns based on the type of visual feature that is misperceived (size, speed, luminance, and distance) and among seven rows based on the different optical features that occur when an observer is moving forward.

He then culled hundreds of previously documented illusions to test whether they would follow the appropriate prediction as determined by the table, and found that they did, indeed, follow the patterns he laid out in the matrix.

This new organization of illusions presents a range of potential applications, including more effective visual displays and enhanced visual arts. It especially may help constrain neuroscientists aiming to understand the mechanisms underlying vision, according to Changizi.

Source: Rensselaer Polytechnic Institute

Explore further: The human brain can 'see' what is around the corner

Related Stories

The human brain can 'see' what is around the corner

December 4, 2017
Neuroscientists at the University of Glasgow have shown how the human brain can predict what our eyes will see next, using functional magnetic resonance imaging (fMRI).

Our brains can trick us into thinking we are thinner than we are

January 10, 2018
Researchers at The University of Western Australia have discovered that a psychological illusion could be making people think they are thinner than they actually are.

Ghosts in the machine: The neural basis of visual illusions in fruit flies

June 22, 2011
(Medical Xpress) -- We experience an interesting phenomenon when the contrast of an image flickers as it moves across our visual field – namely, an illusory reversal in the direction of motion. Moreover, this reverse-phi ...

Animals could help reveal why humans fall for illusions

March 21, 2014
Visual illusions, such as the rabbit-duck and café wall are fascinating because they remind us of the discrepancy between perception and reality. But our knowledge of such illusions has been largely limited to studying humans.

Memories may skew visual perception

July 20, 2011
Taking a trip down memory lane while you are driving could land you in a roadside ditch, new research indicates. Vanderbilt University psychologists have found that our visual perception can be contaminated by memories of ...

Optical illusion reveals reflexes in the brain

December 7, 2011
New research by psychologists at Queen Mary, University of London has revealed that the way we see the world might depend on reflexes in the brain.

Recommended for you

Early results from clinical trials not all they're cracked up to be, shows new research

February 21, 2018
When people are suffering from a chronic medical condition, they may place their hope on treatments in clinical trials that show early positive results. However, these results may be grossly exaggerated in more than 1 in ...

Spare parts from small parts: Novel scaffolds to grow muscle

February 20, 2018
Australian biomedical engineers have successfully produced a 3D material that mimics nature to transform cells into muscle.

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

minorwork
4 / 5 (1) May 16, 2008
From the retina, to the thalamus, to the visual cortex, back to the thalamus. A tenth of a second to process the position of that fast ball. Then coordinate with the various muscle control groups. No wonder the pitchers throw curve balls. Still, it seems the thalamus is the center for the feedback. Dare I ask; Could this be the "soul," the ghost in the machine?
dvn_visionary
5 / 5 (1) May 17, 2008
You have undoubtedly seen a novice batter, swing amazingly late at a ball that is not thrown that fast. Over a relatively short period of repetitive trials, the batter does not become all that stronger or faster, they get better at predicting how to swing the bat to meet the point in space that the ball will be. Pretty cool ability for any organized system, to be able to predict the most likely of futures!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.