Discovery has implications for heart disease

May 1, 2008

A study, led by University of Iowa researchers, reveals a new dimension for a key heart enzyme and sheds light on an important biological pathway involved in cell death in heart disease. The study, published in the May 2 issue of Cell, has implications for understanding, and potentially for diagnosing and treating, heart failure and arrhythmias.

The UI researchers and colleagues from Vanderbilt University in Nashville, Tenn., focused on calmodulin kinase II, or CaM kinase II, a well-studied enzyme critical to many fundamental processes including heartbeat and thought.

Scientists know that CaM kinase’s activity is sustained by adding a phosphate group -- a process known as phosphorylation. The new study proves that oxidation -- adding oxygen -- also can sustain the enzyme’s activity, and like phosphorylation, the mechanism can be reversed to inactivate the kinase.

"Our results suggest that oxidation of CaM kinase is a dynamic and reversible process that may direct cell signaling in health and disease," said Mark Anderson, M.D., Ph.D., UI professor of internal medicine and molecular physiology and biophysics and senior study author. "Because CaM kinase activity is involved in arrhythmias, hypertrophy and heart cell death, this work also provides new insights into a disease pathway in heart that may lead to development of new drugs to treat heart disease."

In patients with heart failure, the level of angiotensin II -- a signaling molecule that promotes oxidation and cell death -- is elevated. Using a specially created antibody, the researchers found that angiotensin II also increases the amount of oxidized CaM kinase.

In addition, by replacing the cell’s normal CaM kinase with a CaM kinase unable to be oxidized, the scientists were able to block angiotensin-induced cell death. Scientists hope this discovery might lead to therapies that prevent cell death by blocking CaM kinase oxidation.

Currently, "angiotensin-blockers" are a mainstay for treating patients with sick hearts, but they work indirectly by targeting receptors on the cell surface. Anderson, who also is the Potter-Lambert Chair in Cardiology and director of the UI Division of Cardiovascular Medicine, suggested that by understanding the signaling mechanisms that occur inside the cell, it might be possible to inhibit the angiotensin pathway more directly. This approach may also preserve some of the good effects mediated by the cell surface receptor.

Using a wide range of scientific techniques and experimental methods, the team, led by Anderson and Jeffrey Erickson, Ph.D., a UI postdoctoral fellow, pinned down the details of the internal signaling mechanism.

Specifically, they showed that oxidation of two neighboring methionines -- sulfur-containing amino acids -- can sustain CaM kinase activity. Loss of these two methionines prevents activation by oxidation. They also found that they could return CaM kinase to its inactive state and inhibit heart cell death and dysfunction by using an enzyme called methionine sulfoxide reductase A (msrA), which reverses the methionine oxidation. Studies in worms, fruit flies and mice have shown that msrA increases lifespan, but, until now, the enzyme's targets in heart were unknown.

The UI team compared mice without the msrA enzyme to normal mice when the animals underwent disease stresses, including excess angiotensin or induced heart attacks. The mice without msrA were more likely to die than normal mice under these circumstances, and the levels of oxidized CaM kinase were much higher in mice that lacked the enzyme.

Anderson speculated that the findings could implicate msrA as a susceptibility gene for patients – potentially, variations in the gene might help explain why some people do so badly after a heart attack where others do well.

The study demonstrates a direct link between CaM kinase activation and oxidative stress, two processes that are implicated in a wide variety of physiological and disease states. These findings will likely have broad implications and applications in basic research, diagnostics and new therapeutic approaches and represent an example of translation science of the type supported and encouraged by the new Institute for Clinical and Translational Science at the UI.

"This study also is a great example of collaborative science," added Anderson. "We had to apply expertise from several different labs to tackle this problem. So, the ease with which we can collaborate across disciplines at the UI and between institutions was enormously beneficial."

Source: University of Iowa

Explore further: Enzyme CaM kinase II relaxes muscle cells: Researchers find overactive enzyme in failing hearts

Related Stories

Enzyme CaM kinase II relaxes muscle cells: Researchers find overactive enzyme in failing hearts

January 17, 2013
A certain enzyme, the CaM kinase II, keeps the cardiac muscle flexible. By transferring phosphate groups to the giant protein titin, it relaxes the muscle cells. This is reported by researchers led by Prof. Dr. Wolfgang Linke ...

Study explains how heart attack can lead to heart rupture

November 17, 2011
For people who initially survive a heart attack, a significant cause of death in the next few days is cardiac rupture -- literally, bursting of the heart wall.

Inhibiting CaMKII enzyme activity could lead to new therapies for heart disease

October 11, 2012
University of Iowa researchers have previously shown that an enzyme called CaM kinase II plays a pivotal role in the death of heart cells following a heart attack or other conditions that damage or stress heart muscle. Loss ...

Recommended for you

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.