A new gene trigger for pregnancy disorder identified

May 11, 2008

The COMT gene – known already for its role in schizophrenia – has been found to play a role in preeclampsia, according to a report in today’s advance on-line issue of Nature.

Led by researchers at Beth Israel Deaconess Medical Center (BIDMC), the study further suggests that a steroid molecule, 2-ME, may serve as both a diagnostic marker and therapeutic supplement for the treatment of this dangerous pregnancy disorder.

Characterized by hypertension, proteinuria, and edema, preeclampsia affects approximately 5 percent of all pregnancies worldwide, and is a leading cause of maternal and neonatal morbidity. Knowing that placental hypoxia, or oxygen shortage, associated with vascular dysfunction, is a hallmark of the condition, senior author Raghu Kalluri, PhD and his colleagues began by screening for genes that regulate hypoxia.

“Seeing pregnant women with this disease in the clinic inspired me to dedicate our efforts to find likely causative genes that play a role in preeclampsia,” says Kalluri.

“During pregnancy, hypoxia is associated with the formation of new blood vessels,” explains Kalluri, Chief of the Division of Matrix Biology at BIDMC and Professor of Medicine at Harvard Medical School.

“As a result, during the first trimester of pregnancy, when the fetus is undergoing rapid development, hypoxia levels are high. As the pregnancy progresses, hypoxia levels should naturally come down as fetal blood vessels formation slows.” But, he adds, for unknown reasons, patients with preeclampsia remain hypoxic well into their third trimester of pregnancy.

Studies in the Kalluri laboratory revealed an enzyme known as COMT (catechol-O-methyltransferase) in preeclampsia, a gene commonly associated with schizophrenia which, under normal circumstances, inactivates the catecholamine class of neurotransmitters.

“Interestingly, this enzyme contributes to the breakdown of estrogen into 2ME (2-methoxyestradiol), a metabolite that suppresses the activity of hypoxia inducible factor protein,” explains Kalluri. “We wondered if, in cases of preeclampsia, COMT was not functioning properly. In support of this hypothesis, we found that COMT levels were deficient and 2-ME levels were lower in pregnant women with preeclampsia.”

Next the investigators looked at genetically engineered COMT deficient mice; as predicted, the animals failed to produce 2-ME. At 14 weeks gestation – the presumable equivalent of the beginning of the third trimester in human pregnancy – the animals developed protein leak in the urine, high blood pressure and problems with placental blood vessels associated with decreased oxygen levels.

In addition, the animals delivered a day or so earlier than normal pregnant mice and there was a greater incidence of stillborn pups. However, once the pups were delivered, the health of the mother returned to normal.

“The loss of 2-ME likely sets in motion a cascade of events culminating in preeclampsia,” says Kalluri. “Disruption of COMT/2-ME led to elevated hypoxia, leading to angiogenic dysfunction and placental insufficiency, which then results in a further decrease in 2-ME levels.”

In the final portion of the study, the authors administered 2-ME to the mice, resulting in a reversal of preeclampsia-like-symptoms.

“Interestingly, the many diverse factors that have been identified in the recent years as elevated or suppressed in women with preeclampsia are fixed by 2-ME, suggesting that this action of COMT is central to proper vascular function in the placenta,” notes Kalluri. “This study offers the possibility of screening for COMT gene defects in pregnant women to predict preeclampsia.”

Source: Beth Israel Deaconess Medical Center

Related Stories

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.