Different type of colon cancer vaccine reduces disease spread, Jefferson scientists show

June 25, 2008,

(Taking advantage of the fact that the intestines have a separate immune system from the rest of the body, scientists at the Kimmel Cancer Center at Jefferson in Philadelphia have found a way to immunize mice against the development of metastatic disease.

Reporting online Tuesday, June 24, 2008 in the Journal of the National Cancer Institute, Scott Waldman, M.D., Ph.D., professor and chair of Pharmacology and Experimental Therapeutics at Jefferson Medical College of Thomas Jefferson University and his co-workers have shown that mice immunized with an intestinal protein developed fewer lung and liver metastases after injection with colon cancer cells than did control animals that were not immunized. The work may portend the development of a different kind of cancer vaccine, the researchers say, that may help prevent disease recurrence.

One of the reasons that cancer vaccines have been disappointing in many cases is the lack of immune system-alerting protein antigens that are specific for tumors only. According to Dr. Waldman, mucosal cells, which line the intestines (colon cancer arises from mucosal cells, and mucosal cell proteins continue to be expressed even after they become cancer) are essentially compartmentalized and possess a separate and distinct immune system from the body's general immune system. He and his group thought that such proteins would be seen as foreign by the latter system and be useful for anti-cancer vaccines.

Dr. Waldman, postdoctoral fellow Adam Snook, Ph.D., and their colleagues engineered viruses – adenovirus, vaccinia and rabies – to express the protein guanylyl cyclase C (GCC), which is normally found in the intestinal lining (and in metastatic colon cancer). The researchers injected the animals with colon cancer cells before or after immunization.

They found that the vaccinated animals developed fewer metastases in the liver and lung – 90 percent and 75 percent, respectively – compared with control animals. Vaccination also prolonged overall survival, with a median of 38 days in immunized animals and 29 days in control animals.

"We think this identifies a novel class of vaccine candidate targets for tumors that originate and metastasize from mucosa, like colorectal cancer," Dr. Waldman says. "Mucosal cells turn into cancer, invade the wall of the intestine, breech the compartment and metastasize, carrying with them all the antigens that typically reside in the mucosal system. They continue to be expressed by tumors that originate in the mucosa even when those tumors metastasize into the systemic compartment where they don't belong."

Dr. Waldman sees GCC as "the poster child" for mucosal antigens. "Immunizing an animal or person systemically with GCC will be recognized to some degree as foreign, and the body will mount an immune response in the systemic compartment," he explains. "We think that the immune response will be effective against the cancer but it won't cross over into the intestines and cause autoimmune disease."

As a result, he says, the immune responses against GCC could be used both prophylactically and therapeutically. "The target populations for such a vaccine are patients who have had surgery and adjuvant chemotherapy and have no evidence of disease. If they have recurrence, it's from microscopic disease."

"This paper demonstrates the profile of a model cancer mucosal antigen class that can generate systemic immune responses," he says. "There is incomplete systemic tolerance to these antigens, as we predicted, and that the immune responses have anti-tumor efficacy and the animals are free of autoimmune disease."

The researchers suggest that this approach of using antigens from tumors originating in immune-restricted sites might be extended to other cancers that originate from mucosal cells, including cancers of the head and neck, lung, breast, vagina, and bladder. Adding mucosal antigens from the same tumor type might also enable the development of a "polyvalent" vaccine, Dr. Waldman notes.

Source: Thomas Jefferson University

Explore further: Virtual reality helping to improve healthcare

Related Stories

Virtual reality helping to improve healthcare

January 29, 2018
A virtual reality colonoscopy developed by researchers at the University of Sheffield could help clinicians to detect abnormalities in the digestive system.

TLR1 protein drives immune response to certain food-borne illness in mice

July 10, 2012
A naturally occurring protein called TLR1 plays a critical role in protecting the body from illnesses caused by eating undercooked pork or drinking contaminated water, according to new research from the University of Southern ...

Immune responses can be generated locally within human melanoma skin metastases

July 31, 2012
In many types of cancer, activated immune cells infiltrate the tumor and influence clinical outcome. It is not always clear where these cells are activated, but results reported in Cancer Research, a journal of the American ...

The immunotherapy, pembrolizumab, is active against mucosal melanoma tumors

January 29, 2017
Clinical trials of a new immunotherapy, pembrolizumab, have shown that it prolongs life significantly for patients with bladder cancer and is active against a rare sub-type of melanoma, called mucosal melanoma. The findings ...

A vaccine candidate that supports immunity where it matters most

October 29, 2015
Almost all infections make us sick by getting past our first line of defense - the sticky mucous surfaces that line our mouths, our eyes, our lungs and our guts. Once through, it's up to the immune cells that reside in our ...

Onco-dermatologist discusses cancer-related skin, hair and nail problems

September 11, 2017
You probably know that oncologists treat cancer and dermatologists specialize in problems related to the skin, hair and nails—but you may not have heard of "onco-dermatology." It links the two specialties to focus on the ...

Recommended for you

Putting black skin cancer to sleep—for good

February 22, 2018
An international research team has succeeded in stopping the growth of malignant melanoma by reactivating a protective mechanism that prevents tumor cells from dividing. The team used chemical agents to block the enzymes ...

Cancer risk associated with key epigenetic changes occurring through normal aging process

February 22, 2018
Some scientists have hypothesized that tumor-promoting changes in cells during cancer development—particularly an epigenetic change involving DNA methylation—arise from rogue cells escaping a natural cell deterioration ...

NEJM reports positive results for larotrectinib against TRK-fusion cancer

February 22, 2018
In 2013, the labs of University of Colorado Cancer Center investigator Robert C. Doebele, MD, PhD, and Dana-Farber Cancer Institute investigator Pasi A. Jänne, MD, PhD reported in Nature Medicine the presence of TRK gene ...

Kinase inhibitor larotrectinib shows durable anti-tumor abilities

February 21, 2018
Three simultaneous safety and efficacy studies of the drug larotrectinib reported an overall response rate of 75 percent for patients ages four months to 76 years with 17 different cancer diagnoses. All patients had tumors ...

New therapeutic gel shows promise against cancerous tumors

February 21, 2018
Scientists at the UNC School of Medicine and NC State have created an injectable gel-like scaffold that can hold combination chemo-immunotherapeutic drugs and deliver them locally to tumors in a sequential manner. The results ...

Five novel genetic changes linked to pancreatic cancer risk

February 21, 2018
In what is believed to be the largest pancreatic cancer genome-wide association study to date, researchers at the Johns Hopkins Kimmel Cancer Center and the National Cancer Institute, and collaborators from over 80 other ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.