Prenatal biochemical screening only detects half of chromosomal abnormalities

June 2, 2008

Prenatal biochemical screening tests are widely used to look for chromosomal abnormalities in the fetus which can lead to serious handicap, or even death during gestation or in the first few days after birth. But these tests are only able to detect fewer than half of the total chromosomal abnormalities in the fetus, a scientist will tell the annual conference of the European Society of Human Genetics today.

Dr. Francesca R. Grati, of the TOMA Laboratory, Busto Arsizio, Italy, says that these findings mean that women should be better informed on the limitations of such diagnostic tests.

The researchers studied 115,576 prenatal diagnoses carried out during the last fourteen years. 84,847 were amniocenteses, usually carried out around the 16th week of pregnancy, and 30,729 chorionic villus samplings, which can be undertaken from 12 weeks into the pregnancy. Both these tests carry an increased risk of miscarriage, so the decision on whether or not to undertake them can be difficult to weigh up.

"Since our sample included a large number of women aged less than 35 who underwent invasive prenatal diagnosis without any pathological indication to do so, we felt that the results could be useful in helping to inform pre-test counselling of such women", says Dr. Grati. "Up until now, the information we had came from smaller studies which only looked at the performance of these tests in detecting a limited number of chromosomal abnormalities."

After analysing the results of the chromosomal abnormalities from their own dataset, the researchers combined them with the official detection rates for these abnormalities published by SURUSS and FASTER consortia. These are multi-centre research groups involved in the investigation of screening and diagnostic tests performed in pregnancy, whose results are being used to optimise prenatal care for pregnant patients. They found that current screening procedures were only able to detect half the total chromosomal abnormalities in women both younger and older than 35.

The TOMA laboratory is particularly suited to carry out this kind of research, says Dr. Grati, because it was among the first in the world to deal with prenatal diagnosis, and has a vast number of prenatal diagnostic samples at its disposal.

Current tests do not detect all fetal chromosomal abnormalities, but only trisomies 21 (Down syndrome), 18 (Edward's syndrome), and 13 (Patau syndrome), monosomy X (Turner syndrome), and triploids (conceptuses with 69 chromosomes instead of 46). "These are common vital chromosomal abnormalities, but there are many others which are not picked up by these tests", says Dr. Grati. "And the tests do not even detect 100% of the common abnormalities."

At conception, 23 chromosomes from each parent combine to create a fetus with 46 chromosomes in all its cells. Trisomy occurs when the fetus has one additional chromosome (47 instead 46). The extra genetic material from the additional chromosome causes a range of problems of varying severity.

In Down syndrome, for example, where the fetus has three copies of chromosome 21, babies are usually born with impaired cognitive ability and physical growth, cardiac defects and a characteristic facial appearance. Unlike many other such abnormalities, however, babies born with Down syndrome are able to lead relatively normal lives and their life expectancy is around 50 years.

Other than trisomy, the fetus can also have the loss of genetic material (deletions) or chromosomal abnormalities in a non-homogeneous form, where there is a mixture of two cell lines, one normal and the other abnormal. "Some of these disorders are relatively common in the fetus, which may have as much chance of surviving as children who are born with Down syndrome, and it is worrying that current biochemical tests are not always able to detect them" says Dr. Grati. "Our research confirms that it is fundamental for doctors to counsel patients about the limitations of current screening methods, so that they can make an informed decision on whether or not to undergo invasive diagnostic testing."

Source: European Society of Human Genetics

Explore further: How close are we to a cure for Huntington's?

Related Stories

How close are we to a cure for Huntington's?

March 6, 2018
"It came completely out of the blue," says James*. They had thought it was his father's knees that were the problem – he was never comfortable and was constantly shifting them. "He went to the doctor, and he said, 'You ...

Study tracks evolutionary transition to destructive cancer

February 23, 2018
Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure—cornerstones of Darwin's theory—are the means ...

Fragile X syndrome neurons can be restored, study shows

February 16, 2018
Fragile X syndrome is the most frequent cause of intellectual disability in males, affecting one out of every 3,600 boys born. The syndrome can also cause autistic traits, such as social and communication deficits, as well ...

Genomic analysis underscores need for precision therapies that target pediatric cancer

February 28, 2018
Researchers have determined that children and adults with cancer usually have different mutated genes driving their disease, which suggests they would likely benefit from different therapies. The finding, from a collaborative ...

What genetic testing information to expect when you're expecting

February 2, 2018
Experts have recommended greater support and choice of information for pregnant women who decide to have genetic testing.

The Down's syndrome 'super genome'

January 19, 2018
Down's syndrome – also known as trisomy 21 – is a genetic disorder caused by an additional third chromosome 21. Although this genetic abnormality is found in one out of 700 births, only 20 percent of foetuses with trisomy ...

Recommended for you

New methods find undiagnosed genetic diseases in electronic health records

March 15, 2018
Patients diagnosed with heart failure, stroke, infertility and kidney failure could actually be suffering from rare and undiagnosed genetic diseases.

Hundreds of genes linked to intelligence in global study

March 14, 2018
More than 500 genes linked to intelligence have been identified in the largest study of its kind. Scientists compared variation in DNA in more than 240,000 people from around the world, to discover which genes are associated ...

Study finds that genes play a role in empathy

March 12, 2018
A new study published today suggests that how empathic we are is not just a result of our upbringing and experience but also partly a result of our genes.

Large-scale genetic study provides new insight into the causes of stroke

March 12, 2018
An international research consortium studying 520,000 individuals from around the world has identified 22 new genetic risk factors for stroke, thus tripling the number of gene regions known to affect stroke risk. The results ...

Study suggests some CpGs in the genome can be hemimethylated by design

March 9, 2018
A pair of researchers at Emory University has found that some CpGs in the genome can be hemimethylated by design, rather than by chance. In their paper published in the journal Science, Chenhuan Xu and Victor Corces describe ...

Intravenous arginine benefits children after acute metabolic strokes

March 9, 2018
Children with mitochondrial diseases who suffered acute metabolic strokes benefited from rapid intravenous treatment with the amino acid arginine, experiencing no side effects from the treatment. The diseases were caused ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.