Defining DNA differences to track and tackle typhoid

July 28, 2008,

For the first time, next-generation DNA sequencing technologies have been turned on typhoid fever - a disease that kills 600,000 people each year. The results will help to improve diagnosis, tracking of disease spread and could help to design new strategies for vaccination.

The study sets a new standard for analysing the evolution and spread of a disease-causing bacterium: it is the first study of multiple samples of any bacterial pathogen at this level of detail. It uncovers previously hidden genetic signatures of the evolution of individual lineages of Salmonella Typhi.

The team developed methods that are being used to type outbreaks, allowing researchers to identify individual organisms that are spreading in the population: using Google Earth, the outbreaks can be easily visualized. The team hope that these mapping data can be used to target vaccination campaigns more successfully with the aim of eradicating typhoid fever.

Unlike most related Salmonella species, and in contrast to many other bacteria, Typhi is found only in humans and the genomes of all isolates are superficially extremely similar, hampering attempts to track infections or to type more prevalent variants. The detail of the new study transforms the ability of researchers to tackle Typhi.

"Modern genomic methods can be used to develop answers to diseases that have plagued humans for many years," explains Professor Gordon Dougan from the Wellcome Trust Sanger Institute and senior author on the study. "Genomes are a legacy of an organism's existence, indicating the paths it has taken and the route it is on. This analysis suggests we may have found Typhi's Achilles' heel: in adapting to an exclusively human lifestyle, it has become complacent, its genome is undergoing genetic decay and it's heading up an evolutionary dead end in humans.

"We believe that concerted vaccination programmes, combined with epidemiological studies aiming to track down and treat carriers, could be used to eradicate typhoid as a disease."

There are 17 million cases of Typhoid fever each year - although the World Health Organization cautions that this is a 'very conservative' estimate. Young people are most at risk: in Indonesia, nine out of ten cases occur in 3-19-year-olds.

"A key to survival of Salmonella Typhi is its ability to lie dormant in carriers, who show no symptoms but remain able to infect others," says Kathryn Holt, a PhD student at the Wellcome Trust Sanger Institute and first author on the study. "Our new tools will assist us in tracing the source of typhoid outbreaks, potentially even to infected carriers, allowing those individuals to be treated to prevent further spread of the disease.

"Using the genomic biology of this study, we can now type Typhi, identify the strain that is causing infection, identify carriers and direct vaccination programmes most efficiently. It is a remarkable step forward."

The study is a collaboration between researchers at the Wellcome Trust Sanger Institute, University College, Cork, Institut Pasteur in Paris and Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam. The team studied 19 isolates of Typhi from ten countries, using new sequencing methods that meant they could capture the rare signals of genetic variation in this stubborn genome. They produced more than 1.7 billion letters of genetic sequence and found evidence of fewer than 2000 mutation events, suggesting very little evolution since the emergence of Typhi at least 15,000 years ago.

Their analysis shows that the Typhi genome is decaying - as it becomes more closely allied to us, its human host, it is losing genes that are superfluous to life in the human body. More importantly, genes that contain instructions for the proteins on the surface of the bacterium - those most often attacked by our immune system defences - vary much less than do the equivalent genes in most other bacteria, suggesting that Typhi has a strategy to circumvent the selective pressures of our immune system.

"Both the genome and the proteins that make up the surface of Typhi - the targets for vaccines - show amazingly little variation," says Professor Julian Parkhill, Head of Pathogen Genomics. "We have been able to use novel technologies, developed for the analysis of human genome variation, to identify this variation: this would have been impossible a year ago. The technologies we have developed here could also be used in the battles against other disease-causing bacteria."

Citation: Holt KE et al. (2008) High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nature Genetics, available online in advance of print publication on Sunday 27 June 2008; dx.doi.org/ 10.1038/ng.195

Source: Wellcome Trust Sanger Institute

Explore further: Antibiotic-resistant typhoid detected in countries around the world

Related Stories

Antibiotic-resistant typhoid detected in countries around the world

May 11, 2015
There is an urgent need to develop global surveillance against the threat to public health caused by antimicrobial resistant pathogens, which can cause serious and untreatable infections in humans. Typhoid is a key example ...

Anti-typhoid gene found, may improve vaccines

November 10, 2014
Scientists said Monday they had found a variant of a gene that confers a near five-fold protection against typhoid fever, which kills millions of people each year.

Genomic data reveals emergence in Africa of drug resistant strain of typhoid

May 26, 2015
The team has completed two genomics studies on the tropical disease, a condition that is estimated to cause up to 30 million illnesses and over a quarter of a million deaths globally each year.

Gut bacteria play key role in vaccination, study finds

June 5, 2013
The bacteria that live in the human gut may play an important role in immune response to vaccines and infection by wild-type enteric organisms, according to two recent studies resulting from a collaborative effort between ...

An unusual version of a gene appears to protect against enteric fever

April 15, 2015
A study looking for links between genes and susceptibility to enteric fever has found that people who carry a specific version of a gene are nearly five times less likely to have the disease. This finding by an A*STAR-led ...

Online epidemic tracking tool embraces open data and collective intelligence

November 30, 2016
Researchers from the Wellcome Trust Sanger Institute and Imperial College London have developed Microreact, a free, real-time epidemic visualisation and tracking platform that has been used to monitor outbreaks of Ebola, ...

Recommended for you

Study of smoking and genetics illuminates complexities of blood pressure

February 15, 2018
Analyzing the genetics and smoking habits of more than half a million people has shed new light on the complexities of controlling blood pressure, according to a study led by researchers at Washington University School of ...

A gene that increases the risk of pancreatic cancer controls inflammation in normal tissue

February 14, 2018
Inflammation is a defensive response of the body to pathogens, but when it persists, it can be harmful, even leading to cancer. Hence, it is crucial to understand the relationship between inflammation and cancer. A group ...

Scientists develop low-cost way to build gene sequences

February 13, 2018
A new technique pioneered by UCLA researchers could enable scientists in any typical biochemistry laboratory to make their own gene sequences for only about $2 per gene. Researchers now generally buy gene sequences from commercial ...

New insights into gene underlying circadian rhythms

February 13, 2018
A genetic modification in a "clock gene" that influences circadian rhythm produced significant changes in the length and magnitude of cycles, providing insight into the complex system and giving scientists a new tool to further ...

Clues to aging found in stem cells' genomes

February 13, 2018
Little hints of immortality are lurking in fruit flies' stem cells.

Gene therapy researchers find viral barcode to cross the blood-brain barrier

February 9, 2018
Gene therapies promise to revolutionize the treatment of many diseases, including neurological diseases such as ALS. But the small viruses that deliver therapeutic genes can have adverse side effects at high doses. UNC School ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.