Lung inflammation from influenza could be turned off with new discovery

July 28, 2008,

A new discovery could lead to treatments which turn off the inflammation in the lungs caused by influenza and other infections, according to a study published today in the journal Nature Immunology.

The symptoms of influenza, such as breathlessness, weight loss and fever, are made much worse by the immune system responding in an exaggerated way to the virus, rather than by the virus itself. The virus is often cleared from the body by the time symptoms appear and yet symptoms can last for many days, because the immune system continues to fight the damaged lung.

The immune system is essential for clearing the virus, but it can damage the body when it overreacts if it is not quickly contained. Such overreaction occurs in a number of diseases as well as influenza, such as asthma and inflammatory conditions in the gut.

During influenza infection, the immune system's prolonged response causes the lungs to become inflamed and this can clog the airways and cause difficulty breathing.

The new study, led by researchers from Imperial College London, reveals how the activity of immune cells in the lung is normally kept under control by a receptor known as CD200R, working with another molecule called CD200.

CD200R is found in high levels in the lungs and the new research shows that it is able to limit the immune system's response and to turn off inflammation once it has started.

Influenza overrides the CD200 molecule and without CD200 to bind to, CD200R cannot work to prevent the immune system from overreacting, so the lungs become inflamed.

In the new study, the researchers gave mice infected with influenza a mimic of CD200, or an antibody to stimulate CD200R, to see if these would enable CD200R to bring the immune system under control and reduce inflammation.

The mice that received treatment had less weight loss than control mice and less inflammation in their airways and lung tissue. The influenza virus was still cleared from the lungs within seven days and so this strategy did not appear to affect the immune system's ability to fight the virus itself.

Following these results in mice, the researchers hope that a therapy could be developed for people which can quickly work with the CD200R receptor and stop the immune system from fighting when it is no longer needed. They believe this would quickly reduce symptoms and reduce the damage that the immune system causes in the lungs and elsewhere.

Professor Tracy Hussell, the lead author of the research from the National Heart and Lung Institute at Imperial College London, said: "The immune system is very sophisticated and much of the time it does a fantastic job of fighting infection, but it has the ability to cause a lot of damage when it overreacts. Our new research is still in its early stages, but these findings suggest that it could be possible to prevent the immune system going into overdrive, and limit the unnecessary damage this can cause."

Dr Robert Snelgrove, a Sir Henry Wellcome Postdoctoral Fellow at Imperial College London and another author of the research, added: "Although flu is just an inconvenience for some people, it can be dangerous and even fatal in the very young and elderly. We hope our research could ultimately help to develop treatments which fight the effects of this sometimes lethal virus."

The researchers hope that in the event of a flu pandemic, such as a pandemic of H5N1 avian flu that had mutated to be transmissible between humans, the new treatment would add to the current arsenal of anti-viral medications and vaccines. One key advantage of this type of therapy is that it would be effective even if the flu virus mutated, because it targets the body's overreaction to the virus rather than the virus itself.

In addition to the possible applications for treating influenza, the researchers also hope their findings could lead to new treatments for other conditions where excessive immunity can be a problem, including other infectious diseases, autoimmune diseases and allergy.

Source: Imperial College London

Explore further: New approach could help curtail hospitalizations due to influenza infection

Related Stories

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Firm advances human trials of revolutionary vaccine

January 18, 2018
Amid predictions that this year's flu vaccine will offer limited protection, medical researchers are renewing their focus on a universal flu vaccine.

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Previous influenza virus exposures enhance susceptibility in another influenza pandemic

January 16, 2018
While past exposure to influenza A viruses often builds immunity to similar, and sometimes different, strains of the virus, Canadian researchers are calling for more attention to exceptions to that rule.

Scientists seek super-shot for flu 100 years after pandemic

January 17, 2018
The descriptions are haunting.

Why the flu season is so bad this year

January 18, 2018
This year's flu season has hit the United States hard, with nearly every state reporting widespread influenza activity in early January. In California, at least 42 people under the age of 65 have died from the flu, and the ...

Recommended for you

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.