Protein transports nutrients believed to protect against eye disease

July 17, 2008

Scientists have identified the protein responsible for transporting nutrients to the eye that are believed to protect against the development of age-related macular degeneration, a leading cause of vision loss in elderly Americans.

The research sought to illuminate the process by which compounds called lutein and zeaxanthin move from the bloodstream to the eye. Various studies have suggested that high concentrations of these two dietary compounds in particular, known as xanthophylls, have properties that can prevent macular degeneration.

These two nutrients are not made by the body and must be obtained through the diet. They are commonly found in green, leafy vegetables, such as kale, spinach, broccoli, zucchini and peas, and in yellow or orange fruits and vegetables, such as carrots, papaya, squash and peaches.

According to the study, the protein SR-B1, or scavenger receptor class B, type 1, plays a central role in transporting these nutrients from the bloodstream to cells in the eye.

"Our research to understand this mechanism might provide a greater appreciation for how one could intervene to possibly slow macular degeneration," said senior study author Earl Harrison, Dean's Distinguished Professor and chair of human nutrition at Ohio State University.

An estimated 10 million Americans have age-related macular degeneration, which gradually destroys sharp, central vision. The macula is located in the center of the retina, the light-sensitive tissue at the back of the eye that sends nerve signals to the brain. Deterioration of the macula blurs the central field of vision needed to drive and read. Treatment can slow vision loss, but does not restore vision, according to the National Eye Institute.

The research appears in the August issue of the Journal of Lipid Research.

Xanthophylls are a class of carotenoids, naturally occurring pigments that absorb blue light and sometimes function as antioxidants. Several studies have suggested that the ability of lutein and zeaxanthin to filter out damaging blue light, combined with their antioxidant properties, might protect against macular degeneration. The xanthophylls are known to accumulate in the macula region of the retina to form a yellow spot, and are referred to as macular pigment.

Though this xanthophyll concentration in the retina has been observed and associated with a lower risk for the disease, the cause of macular degeneration and the precise role these compounds play in protecting against vision loss remain a mystery.

But Harrison and colleagues had observed in their previous work that SR-B1 was involved when intestinal cells absorb these nutrients from the diet, and believed that the same transporter would be needed to help the nutrients travel to cells in the eye as well.

Lutein and zeaxanthin typically represent about 80 percent of the total carotenoid content of the retina, while beta-carotene, a major dietary carotenoid, is found in only trace amounts. That high concentration of one type of carotenoid over another also suggested that a specific binding protein would be involved in the absorption process, Harrison said.

The scientists worked with a line of human retinal pigment epithelial cells from the lining of the retina, which served as a model for how macula cells function. The researchers introduced to these cells three types of carotenoids typically found in eye cells – the xanthophylls lutein and zeaxanthin, as well as beta carotene.

As expected, the retinal pigment epithelial cells absorbed much more of the xanthophylls than the beta carotene. To test the role of the SR-B1 transporter, the researchers used two different methods to block the protein's action. Under both experimental circumstances, blocking the SR-B1 protein also blocked the cells' absorption of the two xanthophylls by between 41 percent and 87 percent compared to absorption when SR-B1 activity was not inhibited.

"It's fairly safe to say that if you inhibit this transporter, you inhibit the uptake of xanthophylls. So that certainly suggests that this transporter is involved in that process," Harrison said.

Source: Ohio State University

Explore further: New drug reduces rate of progression of incurable eye disease

Related Stories

New drug reduces rate of progression of incurable eye disease

October 4, 2017
An international study including researchers from the Centre for Eye Research Australia (CERA) has found a way to slow the progression of dry age-related macular degeneration (AMD) - one of the most common causes of vision ...

New model for hard-to-study form of blindness paves way for future research

September 6, 2017
Macular degeneration is the leading cause of vision loss in older adults, but scientists have long struggled to study and replicate key elements of the disease in the lab. A study published in the Proceedings of the National ...

Researchers unlock regenerative potential of cells in the mouse retina

August 28, 2017
Cells within an injured mouse eye can be coaxed into regenerating neurons and those new neurons appear to integrate themselves into the eye's circuitry, new research shows. The findings potentially open the door to new treatments ...

Artificial vision: what people with bionic eyes see

August 17, 2017
Visual prostheses, or "bionic eyes", promise to provide artificial vision to visually impaired people who could previously see. The devices consist of micro-electrodes surgically placed in or near one eye, along the optic ...

How video goggles and a tiny implant could cure blindness

August 25, 2017
At 16, Lynda Johnson was ready to learn how to drive. Yes, she had a progressive eye disease, retinitis pigmentosa, which already had stolen her night vision. But throughout her childhood, the Millbrae, California, girl had ...

Scientists discover key regulator of blood vessel formation

August 29, 2017
New blood vessels branch out of preexisting ones is via a process called angiogenesis. Although this is essential for survival, development and wound healing, on the flip side, it also feeds and progresses malignant tumors, ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.