Finding suggests novel ways to boost vaccination or natural defenses

July 7, 2008,

Our bodies rely on the production of potent, or 'high affinity', antibodies to fight infection. The process is very complex, yet Sydney scientists have discovered that it hinges on a single molecule, a growth factor, without which it cannot function.

There is much we do not yet understand about our immune system. In simple terms, our bodies produce B cells, which make antibodies, and T cells, which help them. Ways in which these cells operate and interact with each other are still coming to light.

Roughly eight years ago, a new subset of T cells, T follicular helper (TFH) cells, was identified. This important class of T cells operates in specific environments termed 'germinal centres', specialised areas within lymph organs where B cells proliferate to form high affinity antibodies whenever we fight infection. TFH cells play a critical role in that they communicate with, and help activate, B cells.

The novel finding made by Dr Cecile King and PhD student Alexis Vogelzang, from the Garvan Institute of Medical Research in Sydney, was that the molecule interleukin 21 (IL-21) is a growth factor for TFH cells. A paper detailing this finding was published online today in the prestigious international journal Immunity.

A cytokine, or chemical messenger, IL-21 is already well known to immunologists. While its newly identified growth factor role is only one of several functions, that function is fundamental. Without IL-21, the all-important TFH cells could neither develop nor survive.

Dr Cecile King, head of the Mucosal Autoimmunity Group at Garvan, has been investigating the roles of IL-21 for several years. "We already knew that IL-21 was produced by TFH cells and that it was a major initiator of proliferation in B cells," she said. "We were surprised to find that TFH cells not only produce IL-21, they also absolutely need it to survive and they utilise it to function."

"We showed that if you take a mouse genetically deficient in IL-21 and immunise it, you don't get TFH cells and you don't get antibody production. Conversely, if you put IL-21 receptor sufficient, or normal, T cells into the same mouse, where of course the B cells remain abnormal, you recover the normal immune reaction."

"These specialised T cells are thought to be the ones that direct traffic. They are the only ones that can move into the B cell zone and initiate high affinity antibody production."

"Without IL-21, we probably wouldn't be completely immunodeficient, just severely compromised. In addition to the high affinity antibodies we're talking about, our bodies also produce a lot of low affinity antibodies for mopping up infection. That low level response happens around-the-clock and is one of our body's first lines of defence."

"You could say that IL-21 directs the most finely-tuned aspect of our immune response. The highly specialised weaponry developed on-the-spot to target aggressive invaders."

"This finding suggests novel ways to boost vaccination or natural defences."

Source: Research Australia

Related Stories

Recommended for you

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Appetite-controlling molecule could prevent 'rebound' weight gain after dieting

February 15, 2018
Scientists have revealed how mice control their appetite when under stress such as cold temperatures and starvation, according to a new study by Monash University and St Vincent's Institute in Melbourne. The results shed ...

First study of radiation exposure in human gut Organ Chip device offers hope for better radioprotective drugs

February 14, 2018
Chernobyl. Three Mile Island. Fukushima. Accidents at nuclear power plants can potentially cause massive destruction and expose workers and civilians to dangerous levels of radiation that lead to cancerous genetic mutations ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.