Why dopamine freezes parkinson patients and drives drug addicts

August 8, 2008

Parkinson's disease and drug addiction are polar opposite diseases, but both depend upon dopamine in the brain. Parkinson's patients don't have enough of it; drug addicts get too much of it. Although the importance of dopamine in these disorders has been well known, the way it works has been a mystery.

New research from Northwestern University's Feinberg School of Medicine has revealed that dopamine strengthens and weakens the two primary circuits in the brain that control our behavior. This provides new insight into why a flood of dopamine can lead to compulsive, addictive behavior and too little dopamaine can leave Parkinson's patients frozen and unable to move.

"The study shows how dopamine shapes the two main circuits of the brain that control how we choose to act and what happens in these disease states, " said D. James Surmeier, lead author and the Nathan Smith Davis Professor and chair of physiology at the Feinberg School. The paper is published in the August 8 issue of the journal Science.

These two main brain circuits help us decide whether to act out a desire or not. For example, do you get off the couch and drive to the store for an icy six-pack of beer on a hot summer night, or just lay on the couch?

One circuit is a "stop" circuit that prevents you from acting on a desire; the other is a "go" circuit that provokes you to action. These circuits are located in the striatum, the region of the brain that translates thoughts into actions.

In the study, researchers examined the strength of synapses connecting the cerebral cortex, the region of the brain involved in perceptions, feelings and thought, to the striatum, home of the stop and go circuits that select or prevent action.

Scientists electrically activated the cortical fibers to simulate movement commands and boosted the natural level of dopamine. What happened next surprised them. The cortical synapses connecting to the "go" circuit became stronger and more powerful. At the same time, dopamine weakened the cortical connections in the "stop" circuit.

"This could be what underlies addiction," Surmeier said. "Dopamine released by drugs leads to abnormal strengthening of the cortical synapses driving the striatal 'go' circuits, while weakening synapses at opposing 'stop' circuits. As a result, when events associated with drug taking – where you took the drug, what you were feeling – occur, there is an uncontrollable drive to go and seek drugs."

"All of our actions in a healthy brain are balanced by the urge to do something and the urge to stop," Surmeier said. "Our work suggests that it is not just the strengthening of the brain circuits helping select actions that is critical to dopamine's effects, it is the weakening of the connections that enable us to stop as well. "

In the second part of the experiment, scientists created an animal model of Parkinson's disease by killing dopamine neurons. Then they looked at what happened when they simulated cortical commands to move. The result: the connections in the "stop" circuit were strengthened, and the connections in the "go" circuit were weakened.

"The study illuminates why Parkinson's patients have trouble performing everyday tasks like reaching across a table to pick up a glass of water when they are thirsty," Surmeier said.

Surmeier explained the phenomenon using the analogy of a car. "Our study suggests that the inability to move in Parkinson's disease is not a passive process like a car running out of gas," he said. "Rather, the car doesn't' move because your foot is jammed down on the brake. Dopamine normally helps you adjust the pressure on the brake and gas pedals. It helps you learn that when you see a red light at an intersection, you brake and when the green light comes on, you take your foot off the brake and depress the gas pedal to go. Parkinson's disease patients, who have lost the neurons that release dopamine, have their foot perpetually stuck on the brake."

Understanding the basis for these changes in brain circuitry moves scientists closer to new therapeutic strategies for controlling these brain disorders and other involving dopamine like schizophrenia, Tourette's syndrome and dystonia.

Source: Northwestern University

Explore further: Researchers identify neurons that control brain's body clock

Related Stories

Researchers identify neurons that control brain's body clock

August 3, 2017
Neurons in the brain that produce the pleasure-signaling neurotransmitter dopamine also directly control the brain's circadian center, or "body clock" - the area that regulates eating cycles, metabolism and waking/resting ...

What causes depression? What we know, don't know and suspect

August 15, 2017
The term and even diagnosis of "depression" can have different meanings and consequences. Depression can be a normal mood state, a clinical disorder, and even a disease.

Low-dose diazepam can increase social competitiveness

July 18, 2017
Psychologists speak of anxiety in two forms: "state" anxiety, which refers to anxiety arising from a particular situation; and "trait" anxiety, which refers to anxiety as part of a person's overall personality. Studies have ...

New study identifies gene that could play key role in depression

July 6, 2017
Globally, depression affects more than 300 million people annually. Nearly 800,000 die from suicide every year—it is the second-leading cause of death among people between the ages of 15 to 29. Beyond that, depression destroys ...

In rats that can't control glutamate, cocaine is less rewarding, staving off relapse

July 11, 2017
Rats missing a neuroreceptor that controls the release of the neurotransmitter glutamate are less amenable to the rewarding effects of cocaine, increasing their chance of kicking the habit once addicted, researchers from ...

The brain cannot be fooled by artificial sweeteners

September 22, 2013
Eating low-calorie sweetened products—especially when hungry or exhausted—may lead to a higher likelihood of seeking high calorie alternatives later, due to a newly discovered signal in the brain, suggests new research ...

Recommended for you

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

September 22, 2017
Group A Streptococcus bacteria cause a variety of illnesses that range from mild nuisances like strep throat to life-threatening conditions including pneumonia, toxic shock syndrome and the flesh-eating disease formally known ...

Ecosystem approach makes urinary tract infection more treatable

September 22, 2017
The biological term 'ecosystem' is not usually associated with urinary tract infections, but this should change according to Wageningen scientists.

Residents: Frontline defenders against antibiotic resistance?

September 22, 2017
Antibiotic resistance continues to grow around the world, with sometimes disastrous results. Some strains of bacteria no longer respond to any currently available antibiotic, making death by infections that were once easily ...

Superbug's spread to Vietnam threatens malaria control

September 21, 2017
A highly drug resistant malaria 'superbug' from western Cambodia is now present in southern Vietnam, leading to alarming failure rates for dihydroartemisinin (DHA)-piperaquine—Vietnam's national first-line malaria treatment, ...

Investigators may unlock mystery of how staph cells dodge the body's immune system

September 21, 2017
For years, medical investigators have tried and failed to develop vaccines for a type of staph bacteria associated with the deadly superbug MRSA. But a new study by Cedars-Sinai investigators shows how staph cells evade the ...

A dose of 'wait-and-see' reduces unnecessary antibiotic use

September 21, 2017
Asking patients to take a 'wait-and-see' approach before having their antibiotic prescriptions filled significantly reduces unnecessary use, a University of Queensland study has shown.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.