A molecule keeps anxiety down

August 19, 2008
In the amygdala, experiences are linked to emotions. It has now been revealed how a small molecule affects this process. Image: Max Planck Institute for Neurobiology/Deininger

(PhysOrg.com) -- The link between emotions and experiences determines many aspects of our daily life. It allows us to recognize pretty objects or harmful situations. These links are created when nerve cells construct new connections to one another or reinforce existing connections. Scientists at the Max Planck Institutes for Neurobiology and Psychiatry and at the Großhadern Clinic (Ludwig Maximilian University) have now discovered a molecule with a crucial influence on the strength of these connections (PNAS, August 4, 2008).

When a child touches a hot plate on a stove, it will more than likely be the first and last time. The reason for this rapid learning process lies in the amygdala, a small area in the brain that links experiences to emotions. In this area, the hot plate, the pain experience and a low level of fear are linked together - and the child avoids touching the hot plate in the future.

While this link from fear to experiences frequently protects the body from injury, an incorrect or inappropriate link can result in serious problems. One example is phobias, in which relatively harmless objects or situations are connected to fear. How do the nerve cells form these links and how are they regulated?

Memories and also fear-experience links are created when nerve cells form new contacts or reinforce existing contact to neighbouring cells. So-called Eph receptors are important for signal transmission at these contact points. They sit on the surface of the nerve cells and have an antenna-like function. If a neighbouring cell with the correct binding partners binds to these receptors, the signal is transmitted more strongly. The fewer Eph receptors a cell has on its surface, the weaker the communication with other nerve cells - and it becomes more difficult to link emotions to experience in the amygdala.

Scientists at the Max Planck Institutes for Neurobiology and Psychiatry and the Großhadern Clinic at the Ludwig Maximilian University have been researching a molecule that controls the number of Eph receptors on the surface of nerve cells. Called Rin1, the molecule ensures that Eph receptors are transported in larger numbers from the cell surface to the cell interior.

If there is no Rin1 in the amygdala nerve cells of a mouse, the number of Eph receptors remains high. The result is a stronger signal transmission between the nerve cells - the molecular basis for a heightened fear response. On the other hand, if the Eph receptor is missing, the communication between the nerve cells is not strengthened and it seemingly becomes more difficult to link the emotion with the experience.

Rin1 is the first module known to limit the availability of Eph receptors in the adult brain. "We are gradually starting to understand how emotions are linked to experiences on a molecular level," says Rüdiger Klein, who headed the study. This understanding is the key to developing potential medicines. "Basic knowledge, such as the regulation of the Eph receptors by Rin1, could permit us in the future to improve the poor transmission of signals between the nerve cells or to eliminate damaging links," says Katrin Deiniger, who hopes to see this as the long-term objective of their study. That is a promising perspective, as Eph receptors play an important part in other processes, for example in the development and regeneration of the nervous system.

Citation: Katrin Deininger, Matthias Eder, Edgar R. Kramer, Walter Zieglgänsberger, Hans-Ulrich Dodt, Klaus Dornmair, John Colicelli, Rüdiger Klein; The Rab5 guanylate exchange factor Rin1 regulates endocytosis of the EphA4 receptor in mature excitatory neurons; PNAS, August 4th, 2008

Provided by Max Planck Institute of Neurobiology

Explore further: Therapeutic antibodies protected nerve–muscle connections in a mouse model of Lou Gehrig's disease

Related Stories

Therapeutic antibodies protected nerve–muscle connections in a mouse model of Lou Gehrig's disease

February 20, 2018
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, causes lethal respiratory paralysis within several years of diagnosis. There are no effective treatments to slow or halt this devastating disease. Mouse ...

Why get a filling when you could print a new smile?

February 20, 2018
Twinges. Painful teeth. About one in 10 people suffer from dental sensitivity caused by worn enamel. But rather than providing short-term solutions like special toothpastes or fillings, new techniques could print whole new ...

A blueprint for future blood-nerve barrier and peripheral nerve disease research

February 6, 2018
Human peripheral nerves—all the nerves outside of the central nervous system—are protected by the blood-nerve barrier. This is a tight covering of endothelial cells that maintains the microenvironment within the nerves ...

Study suggests way to attack deadly, untreatable nerve tumors

February 12, 2018
Genomic profiling of mostly untreatable and deadly nerve sheath tumors led scientists to test a possible therapeutic strategy that inhibited tumor growth in lab tests on human tumor cells and mouse models, according to research ...

The toxic relationship between ALS and frontotemporal dementia

February 5, 2018
ALS and frontotemporal dementia (FTD) are two neurodegenerative diseases with a toxic relationship, according to a new USC Stem Cell study published in Nature Medicine.

Chemist designs diabetic treatment minus harmful side effects

February 9, 2018
A chemist in the College of Arts and Sciences (A&S) has figured out how to control glucose levels in the bloodstream without the usual side effects of nausea, vomiting or malaise.

Recommended for you

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

Iron triggers dangerous infection in lung transplant patients, study finds

February 21, 2018
Researchers at the Stanford University School of Medicine have identified elevated tissue iron as a risk factor for life-threatening fungal infections in lung transplant recipients.

Neuroimaging reveals lasting brain deficits in iron-deficient piglets

February 21, 2018
Iron deficiency in the first four weeks of a piglet's life - equivalent to roughly four months in a human infant - impairs the development of key brain structures, scientists report. The abnormalities remain even after weeks ...

Scientists in Germany improve malaria drug production

February 21, 2018
Scientists in Germany who developed a new way to make a key malaria drug several years ago said Wednesday they have come up with a technique to make the process even more efficient, which should increase global access and ...

Products derived from plants offer potential as dual-targeting agents for experimental cerebral malaria

February 21, 2018
Malaria, a life-threatening disease usually caused when parasites from the Plasmodium family enter the bloodstream of a person bitten by a parasite-carrying mosquito, is a severe health threat globally, with 200 to 300 million ...

Early results from clinical trials not all they're cracked up to be, shows new research

February 21, 2018
When people are suffering from a chronic medical condition, they may place their hope on treatments in clinical trials that show early positive results. However, these results may be grossly exaggerated in more than 1 in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.