Parsing the genome of a deadly brain tumor

September 6, 2008

The most comprehensive to-date genomic analysis of a cancer – the deadly brain tumor glioblastoma multiforme – shows previously unrecognized changes in genes and provides an overall view of the missteps in the pathways that govern the growth and behavior of cells, said members of The Cancer Genome Atlas Research Network in a report that appears online today in the journal Nature.

"This was a big thrust for the public project," said Dr. Richard Gibbs, director of the Baylor College of Medicine Human Genome Sequencing Center, a member of the network and a co-author of the paper. "This answers the big question about whether the cancer genome project is worthwhile. The results show that it is—definitely." The BCM Center, the Genome Sequencing Center at Washington University School of Medicine in St. Louis, Missouri, and the Broad Institute of MIT and Harvard in Cambridge, Massachusetts led the effort that included many members from across the nation.

This interim analysis of 91 tumors and 623 genes provides important clues about how the disease originates and progresses in cells and how it eludes the effects of potent anti-cancer drugs and radiation, said Dr. David Wheeler, associate professor in the Genome Sequencing Center and a co-author of the report. It could provide researchers with clues about how to treat the disease. The Baylor Human Genome Sequencing Center was a major component in the effort to sequence the genes and identify mutations and changes that affected the ways cells react.

"Studies like this show the breadth of mutation across many genes," said Wheeler. "We can see the mutations in all the genes of each pathway that control growth, replication and death in the cancer cell. Researchers have never seen the whole landscape like this before, and it's providing many new insights into strategies to diagnose and treat cancer."

The ultimate goal of the project is to sequence the entire exome – that portion of the genetic blueprint that provides the code for proteins – of the tumor, said Wheeler. In fact, he said, the goal is to sequence genes in 500 brain cancer samples, but the network decided to publish preliminary results.

"When we pulled everything together with just 91 samples, the results were so interesting and important for treatment that we felt we should publish before the end of the project," he said.

Glioblastoma is the most common primary brain tumor. Most people live approximately one year after diagnosis. Understanding this cancer could result in better forms of treatment.

The analysis identified some genes known to cause cancer but whose role in glioblastoma had been previously underestimated, he said. For example, the genes ERBB2 (known to be implicated in breast and other cancers) and NF1 (neurofibromatosis gene 1 involved in a variety of tumors) were both found to be frequently mutated in this brain tumor. Other genes that previously had no known role in glioblastoma such as PIK3R1, a gene involved in regulating the metabolic actions of insulin were also found mutated in a variety of tumors.

In addition, the analysis gave scientists a wide view of how cell pathways are altered during the initiation and growth of glioblastoma.

"If we know what pathways are key to the formation of a tumor, we can design drugs to block those pathways," said Wheeler. "In cancer, key pathways are co-opted to make the cell grow and divide in an uncontrolled fashion."

For example, the TP53 pathway tells mutated cells to die in a process called apoptosis.

"It's a fail-safe mechanism," said Wheeler. "If a cell starts to become cancerous, p53 causes the cell to kill itself. If that pathway is knocked out, the cell avoids the fail-safe mechanism and can continue to divide."

Other pathways involved in the sequencing effort are also disrupted to allow the cancer to grow, he said.

Source: Baylor College of Medicine

Explore further: New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

Related Stories

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Genetic predisposition to breast cancer due to non-brca mutations in ashkenazi Jewish women

July 20, 2017
Genetic mutations in BRCA1 and BRCA2 increase the risk of breast and ovarian cancer in Ashkenazi Jewish women. A new article published by JAMA Oncology examines the likelihood of carrying another cancer-predisposing mutation ...

The uncertain future of genetic testing

July 18, 2017
AnneMarie Ciccarella, a fast-talking 57-year-old brunette with a more than a hint of a New York accent, thought she knew a lot about breast cancer. Her mother was diagnosed with the disease in 1987, and several other female ...

Recommended for you

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.