Stem cell regeneration repairs congenital heart defect

September 11, 2008,

Mayo Clinic investigators have demonstrated that stem cells can be used to regenerate heart tissue to treat dilated cardiomyopathy, a congenital defect. Publication of the discovery was expedited by the editors of Stem Cells and appeared online in the "express" section of the journal's Web site at stemcells.alphamedpress.org/>.

The study expands on the use of embryonic stem cells to regenerate tissue and repair damage after heart attacks and demonstrates that stem cells also can repair the inherited causes of heart failure.

"We've shown in this transgenic animal model that embryonic stem cells may offer an option in repairing genetic heart problems," says Satsuki Yamada, M.D., Ph.D., cardiovascular researcher and first author of the study. "Close evaluation of genetic variations among individuals to identify optimal disease targets and customize stem cells for therapy opens a new era of personalized regenerative medicine," adds Andre Terzic, M.D., Ph.D., Mayo Clinic cardiologist and senior author and principal investigator.

The team reproduced prominent features of human malignant heart failure in a series of genetically altered mice. Specifically, the "knockout" of a critical heart-protective protein known as the KATP channel compromised heart contractions and caused ventricular dilation or heart enlargement. The condition, including poor survival, is typical of patients with heritable dilated cardiomyopathy.

Researchers transplanted 200,000 embryonic stem cells into the wall of the left ventricle of the knockout mice. After one month the treatment improved heart performance, synchronized electrical impulses and stopped heart deterioration, ultimately saving the animal's life. Stem cells had grafted into the heart and formed new cardiac tissue. Additionally, the stem cell transplantation restarted cell cycle activity and halved the fibrosis that had been developing after the initial damage. Stem cell therapy also increased stamina and removed fluid buildup in the body, so characteristic in heart failure.

The researchers say their findings show that stem cells can achieve functional repair in non-ischemic (cases other than blood-flow blockages) genetic cardiomyopathy. Further testing is underway.

Source: Mayo Clinic

Explore further: The coming of age of gene therapy: A review of the past and path forward

Related Stories

The coming of age of gene therapy: A review of the past and path forward

January 11, 2018
After three decades of hopes tempered by setbacks, gene therapy—the process of treating a disease by modifying a person's DNA—is no longer the future of medicine, but is part of the present-day clinical treatment toolkit. ...

Getting straight to the heart of the matter in stem cells

December 21, 2017
The process by which embryonic stem cells develop into heart cells is a complex process involving the precisely timed activation of several molecular pathways and at least 200 genes. Now, Salk Institute scientists have found ...

'Decorated' stem cells could offer targeted heart repair

January 10, 2018
Although cardiac stem cell therapy is a promising treatment for heart attack patients, directing the cells to the site of an injury - and getting them to stay there - remains challenging. In a new pilot study using an animal ...

New stem cell method sheds light on a tell-tale sign of heart disease

January 9, 2018
While refining ways to grow arterial endothelial cells in the lab, a regenerative biology team at the Morgridge Institute for Research unexpectedly unearthed a powerful new model for studying a hallmark of vascular disease.

Breakthrough in diabetic heart disease

January 8, 2018
The molecule responsible for heart disease in diabetics has been identified by University of Otago researchers, greatly improving chances of survival.

Heart-muscle patches made with human cells improve heart attack recovery

January 10, 2018
Large, human cardiac-muscle patches created in the lab have been tested, for the first time, on large animals in a heart attack model. This clinically relevant approach showed that the patches significantly improved recovery ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.