From 12 years onward you learn differently

September 25, 2008

Eight-year-old children have a radically different learning strategy from twelve-year-olds and adults. Eight-year-olds learn primarily from positive feedback ('Well done!'), whereas negative feedback ('Got it wrong this time') scarcely causes any alarm bells to ring. Twelve-year-olds are better able to process negative feedback, and use it to learn from their mistakes. Adults do the same, but more efficiently.

The switch in learning strategy has been demonstrated in behavioural research, which shows that eight-year-olds respond disproportionately inaccurately to negative feedback. But the switch can also be seen in the brain, as developmental psychologist Dr Eveline Crone and her colleagues from the Leiden Brain and Cognition Lab discovered using fMRI research. The difference can be observed particularly in the areas of the brain responsible for cognitive control. These areas are located in the cerebral cortex.

In children of eight and nine, these areas of the brain react strongly to positive feedback and scarcely respond at all to negative feedback. But in children of 12 and 13, and also in adults, the opposite is the case. Their 'control centres' in the brain are more strongly activated by negative feedback and much less by positive feedback.

These research results are reported in The Journal of Neuroscience dated 17 September. Crone and her colleagues used fMRI research to compare the brains of three different age groups: children of eight to nine years, children of eleven to twelve years, and adults aged between 18 and 25 years. This three-way division had never been made before; the comparison is generally made between children and adults.

Crone herself was surprised at the outcome: 'We had expected that the brains of eight-year-olds would function in exactly the same way as the brains of twelve-year-olds, but maybe not quite so well. Children learn the whole time, so this new knowledge can have major consequences for people wanting to teach children: how can you best relay instructions to eight- and twelve-year-olds?' '

The researchers gave children of both age groups and adults aged 18 to 25 a computer task while they lay in the MRI scanner. The task required them to discover rules. If they did this correctly, a tick appeared on the screen, otherwise a cross appeared. MRI scans showed which parts of the brain were activated.

These surprising results set Crone thinking. 'You start to think less in terms of 'good' and 'not so good'. Children of eight may well be able to learn extremely efficiently, only they do it in a different way.'

She is able to place her fMRI results within the existing knowledge about child development. 'From the literature, it appears that young children respond better to reward than to punishment.' She can also imagine how this comes about: 'The information that you have not done something well is more complicated than the information that you have done something well. Learning from mistakes is more complex than carrying on in the same way as before. You have to ask yourself what precisely went wrong and how it was possible.'

Is that difference between eight- and twelve-year-olds the result of experience, or does it have to do with the way the brain develops? As yet, nobody has the answer. 'This kind of brain research has only been possible for the last ten years or so,' says Crone, 'and there are a lot more questions which have to be answered. But it is probably a combination of the brain maturing and experience.'

There is also an area of the brain that responds strongly to positive feedback: the basal ganglia, just outside the cerebral cortex. The activity of this area of the brain does not change. It remains active in all age groups: in adults, but also in children, both eight-year-olds and twelve-year-olds.

Citation: Evaluating the Negative or Valuing the Positive? Neural Mechanisms Supporting Feedback-Based Learning across Development; Anna C. K. van Duijvenvoorde, Kiki Zanolie, Serge A. R. B. Rombouts, Maartje E. J. Raijmakers, and Eveline A. Crone The Journal of Neuroscience, 17 September 2008

Source: Leiden University

Explore further: Lifting the red mist with research on aggression

Related Stories

Lifting the red mist with research on aggression

December 6, 2017
For most people a bit of healthy aggression can give them a competitive edge, but in some it can spill over into violence and now scientists are hoping to unravel why.

High-stress childhoods blind adults to potential loss

December 4, 2017
Adults who lived high-stress childhoods have trouble reading the signs that a loss or punishment is looming, leaving themselves in situations that risk avoidable health and financial problems and legal trouble.

Exergames: good for play time, but should not replace physical education

September 22, 2017
More and more young Australians are playing video games during their leisure time. Fortunately, video game manufacturers have introduced "exergames" in an effort to make this typically sedentary activity more physically engaging. ...

Sleepwalkers are better at automatic walking

October 24, 2017
Sleepwalkers who are awake may have a multi-tasking advantage over non-sleepwalkers, according to recent research that uses virtual realilty.

How a robotic device gives at-risk babies a chance to crawl and explore

July 29, 2016
(Tech Xplore)—Children at risk of cerebral palsy may get help for crawling and walking thanks to a robot assistant, in the form of a motorized device worn by the baby.

Study in teens shows that brain responses to rewards are linked to pain sensitivity

January 26, 2017
Patterns of brain responses to rewards are a significant predictor of pain symptoms—a link that is already present by adolescence—and may be influenced by gene variants affecting pain sensitivity, reports a study in PAIN, ...

Recommended for you

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.