First comprehensive genomic study of common cold reveals new treatment targets

October 24, 2008

Today, scientists from Procter & Gamble (P&G), the University of Calgary and the University of Virginia announced results from the first study to examine the entire human genome's response to the most common cold virus, human rhinovirus. The research confirmed, at the genomic level, that the immune system response to the virus, and not the virus by itself, results in common cold symptoms. Data generated by the study will be crucial in the search for new treatments for the common cold, which is the most common illness worldwide, affecting billions of people every year. Specifically, the study identifies several categories of therapeutic targets that could balance the immune response in order to minimize symptoms during an infection and potentially even lead to therapies that may prevent infection. Results of the study are published in today's online edition of the November 1 issue of the American Journal of Respiratory and Critical Care Medicine (AJRCCM).

"Rhinovirus is the major cause of the common cold, but it is also an important pathogen in more serious conditions, such as asthma and chronic obstructive pulmonary disease (COPD)," said David Proud, PhD, Professor, Department of Physiology & Biophysics, University of Calgary and senior author of the study. "The study's findings are a major step toward more targeted cold prevention and treatment strategies while also serving as a valuable roadmap for the broader respiratory science community."

Over 200 different viruses cause the common cold, but the rhinovirus accounts for 30 to 50 percent of cases. Because of the complexity of our immune response, research has been a lengthy process, with previous human studies only examining the response to infection in a select number of genes.

In the randomized, placebo-controlled study, researchers infected 17 volunteers with rhinovirus-16 and an additional 18 volunteers (who served as the study control group) were given a sham inoculation in the form of a nasal saline spray. The volunteers were all healthy college students who signed informed consent forms. The rhinovirus-16 used in the study was first isolated and purified by Procter & Gamble and the University of Virginia.

After infection, researchers scraped small samples of nasal epithelial cells, which line the passages of the nose, from the volunteers. Rhinovirus-16 and other cold viruses infect these nasal cells, which are the body's first line of defense against airborne pathogens. The researchers then used microarray gene chip technology to compare the gene expression levels between the infected volunteers and the control group.

"Advances in genomics technology now allow us to analyze tens of thousands of genes in the same amount of time required to analyze just a handful of genes just a decade ago," said Jay Tiesman, P&G Genomics Group Leader and study author.

Forty-eight hours after inoculation, the expression of 6,530 genes in infected volunteers were significantly either up-regulated or down-regulated compared to the same genes in the control group. In other words, rhinovirus infection triggered a massive immune response in the nasal mucosa. Because rhinovirus is not as destructive as other more serious viral infections, this response appears to be disproportionate to the threat.

The researchers classified the active genes according to function, and found many involved in a process known as chemotaxis, which recruits various immune cells to the site of infection. These particular genes have been correlated with symptoms such as inflammation, congestion and runny nose. Other groups of active genes have also been classified; among them are genes which make antiviral compounds thought to help thwart infections.

"This study shows that after rhinovirus infection, cold symptoms develop because parts of our immune system are in overdrive," said Lynn Jump, Principal Researcher at P&G and study author. "The findings are important because they provide us a blueprint for developing the ideal cold treatment: one that maintains the body's natural antiviral response while normalizing the inflammatory response."

Of the many antiviral compounds made by the epithelial cells, one, called viperin, was especially intriguing. The study volunteers produced on average 6.5 times more of the viperin gene product than the control group. Previous work found that viperin helps fend off influenza virus, but the new study is the first in humans to show that the compound also combats rhinovirus. This demonstrates that the body generates a similar antiviral response to the cold as it does to more serious viruses like influenza. The researchers confirmed viperin's role in cold defense with two follow-up experiments, also reported in the current study.

Beyond identifying viperin's role in cold defense, scientists also discovered changes in gene expressions that signaled reductions in the body's natural antioxidant defenses. This finding indicates that replenishment of antioxidants during a cold, through vitamin C supplementation, could help bring the body's natural immune system defenses back into balance. Additional data from the study, to be published in a follow-up paper, looked at correlations between vitamin D levels and cold symptoms. Together, these insights provide fertile ground for further investigating the impact of nutrition on optimum immune system function.


Source: Procter & Gamble

Explore further: A new method accelerates the mapping of genes in the 'Dark Matter' of our DNA

Related Stories

A new method accelerates the mapping of genes in the 'Dark Matter' of our DNA

November 6, 2017
The information in the sequence of the human genome has a paramount importance in biomedical research. However, the value of this information is very limited in absence of a detailed map of the genes encoded in the genome. ...

Researchers rethink how 'beige' fat cells burn calories

November 13, 2017
It has been known for decades that low temperatures can trigger specialized fat cells to burn energy to produce heat, but in a new study, UC San Francisco researchers have discovered a new heat-producing pathway in fat cells ...

Four-in-one flu shot may mean lifelong protection against the flu

November 2, 2017
A vaccine combining centralized ancestral genes from four major influenza strains appears to provide broad protection against the dangerous ailment, according to new research by a team from the Nebraska Center for Virology.

Hush little virus, don't say a word: Scientists investigate sleeping viruses

October 26, 2017
Worldwide, four in five adults are infected with herpes simplex virus (HSV), say researchers. But most of those infected don't show symptoms like cold sores because the virus infection is "latent" or "silent"—sleeping—within ...

New findings on mechanisms for body temperature regulation by fat tissue

October 5, 2017
New discoveries about the mechanism responsible for heat generation in the body related to fat tissue oppose classical views in the field and could lead to new ways to fight metabolic disorders associated with obesity, according ...

'Wasabi receptor' for pain discovered in flatworms

October 18, 2017
A Northwestern University research team has discovered how scalding heat and tissue injury activate an ancient "pain" receptor in simple animals. The findings could lead to new strategies for analgesic drug design for the ...

Recommended for you

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.