A fine balance

October 8, 2008
V3 neurons (shown in green) relay signals from the nerve cells in the spinal cord to motor neurons (shown in blue), which cause muscles to contract (points of contact shown in yellow). In addition to establishing a balance between both sides of the body, V3 neurons ensure that the stepping rhythm is robust and well-organized. Courtesy of Dr.Ying Zhang, Salk Institute for Biological Studies

Once a toddler has mastered the art of walking, it seems to come naturally for the rest of her life. But walking and running require a high degree of coordination between the left and right sides of the body. Now researchers at the Salk Institute for Biological Studies have shown how a class of spinal cord neurons, known as V3 neurons, makes sure that one side of the body doesn't get ahead of the other.

The findings, published in the Oct. 9 issue of Neuron, mark an important milestone in understanding the neural circuitry that coordinates walking movements, one of the main obstacles in developing new treatments for spinal cord injuries. In addition to establishing a balance between both sides of the body, they found that the V3 neurons ensure that the stepping rhythm is robust and well-organized.

"In the case of cervical spinal cord injuries, the spinal network that drives your limbs and allows you to walk is still there but no longer receives appropriate activating inputs from the brain." says Martyn Goulding, Ph.D., a professor in the Molecular Neurobiology Laboratory, who led the study. "The fact that the V3 neurons are important for generating a robust locomotor rhythm makes them good candidates for efforts aimed at therapeutic intervention after spinal cord injury."

V3 neurons are so called interneurons, which relay signals from the nerve cells in the spinal cord to motor neurons, which cause muscles to contract. Spinal interneurons form complex networks—commonly referred to as CPGs, short for central pattern generators—that function as local control and command centers for rhythmic movements, which lie at the heart of all locomotion.

Although scientists had known about the locomotor CPG for a long time, they were unable to identify the nerve cells that make up these circuits. When Goulding and others began to break the molecular code that makes these different interneuron cell types, they could start to unravel the wiring of the spinal cord to see how it works.

Neurons in the brain and spinal cord come in two flavors, excitatory neurons that transmit and amplify signals and inhibitory neurons that inhibit and refine those signals. Previously, Goulding and his team discovered that a subset of inhibitory interneurons, the V1 neurons, control the speed of motor rhythm and thus set the pace at which animals walk, while a second group of inhibitory neurons, called V0 neurons, govern the left-right alternating pattern of activity that is needed for stepping, as opposed to hopping, movements. In their latest study, they turned their attention to a class of excitatory neurons, the so-called V3 neurons.

"Most models of the CPG include an inhibitory element that switches off motor neuron activity on one side in order to initiate the next step on the other side of the body, which allows you to walk, hop, skip, and run," says Goulding. "V3 neurons provide an additional level of control, which makes sure that when you walk and run, the intensity of the activity is matched on both sides of the body. If that were not the case, we would be unable to walk or run along a straight line."

In the study, postdoctoral researchers in the Goulding lab genetically engineered mice to specifically shut off their V3 neurons and reveal their function. The first author, Ying Zhang, Ph.D., then performed electrophysiological experiments on spinal cords isolated from these mice and found that without functioning V3 neurons, the length of individual motor neuron bursts began to fluctuate wildly. "Instead of a stable, alternating pattern, we found irregular oscillations between the left and the right side," she says.

"A lot of research focused on the left-right coordination, but it has became clear that different levels of control allow for the fine-tuning of these rhythmic locomotor patterns," says Zhang. "This study will allow us to put together a map of the neurons contributing to the CPG so that we can think about manipulating the CPG for therapeutic purposes."

Since the activity of the motor neurons determines how much the muscle contracts and for how long, the researchers wanted to know how this irregular activity pattern of motor neurons influences the gait of mice strolling down a walkway. Taking advantage of the so-called AlstR/AL system, which was developed by Salk researcher Edward M. Callaway, Ph.D., a professor in the Systems Neurobiology Laboratories, the researchers temporarily shut off V3 neurons in adult mice and sent them on their way along a narrow Plexiglas walkway. While the mice still alternated steps with their left and right hind limbs, the length of each step varied markedly, making it difficult for them to walk with a smooth cadence.

Source: Salk Institute

Explore further: New approach helps rodents with spinal cord injury breathe on their own

Related Stories

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

'Busybody' protein may get on your nerves, but that's a good thing

October 17, 2017
Sensory neurons regulate how we recognize pain, touch, and the movement and position of our own bodies, but the field of neuroscience is just beginning to unravel this circuitry. Now, new research from the Salk Institute ...

Neurobiologist studies how the brain learns to interpret what the body touches

October 6, 2017
It's a touchy subject—literally. Samuel Andrew Hires, assistant professor of biological sciences, wants to know how the brain learns to understand what we're touching. Understanding how this works could one day be a boon ...

Team discovers key molecular details of a common type of brain injury and a possible new treatment strategy

October 10, 2017
Among all the bad things that can happen to the brain when it is severely jolted - in a car accident, for example - one of the most common and worrisome is axon damage. Axons are the long stalks that grow out of the bodies ...

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

Neuroscientists find 'gatekeeper' in itching sensations plays no role in pain transmission

October 3, 2017
A study from North Carolina State University researchers shows that a neurotransmitter involved in relaying itching sensations from the skin to the spinal cord and into the brain plays no role in pain transmission.

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.