Genes that control cell death fingered in age-related hearing loss

October 16, 2008

Several genes that play a role in how our body's cells normally auto-destruct may play a role in age-related hearing loss, according to research published online in the journal Apoptosis – a journal devoted to the topic of cell suicide, or programmed cell death.

Doctors know that genetics play some role in such hearing loss, which affects nearly everyone older than 60, as well as many people somewhat younger. But while more than 100 genes are known to play a role in congenital deafness, scientists have yet to pinpoint any gene in humans that plays a role in presbycusis, or age-related hearing loss.

The research in mice, done by using sophisticated technology comparing gene activity in older mice to their younger counterparts, offers a sort of roadmap to researchers who are confident they are closing in on some of the genetic factors that are part of the process in people.

"It's very likely that multiple genes contribute to age-related hearing loss," said Robert D. Frisina, Ph.D., the lead investigator and professor of Otolaryngology at the University of Rochester Medical Center. "We know the same is true for other diseases, for instance some types of cancer and heart disease."

Frisina is co-director of the International Center for Hearing and Speech Research, which is based both at the University of Rochester Medical Center and at the National Technical Institute for the Deaf in Rochester, N.Y. The group comprises one of the largest research groups in the world devoted to studying, and preventing, the problem of hearing loss as we get older.

The team has spent nearly 20 years looking at the problem. More than 800 people have been put through a rigorous battery of tests that analyze the condition of their ears, their brain performance, and their genes. Despite the effort and that of other groups around the world, there is currently no way to reverse the hearing loss, largely because of the complexity of the process. In addition to genetics, other factors that play a role in presbycusis include sound exposure, medications that can damage hearing, the condition of the brain as it deteriorates with age, and changes in the delicate cells in the inner ear that translate a sound into a signal that the brain "hears."

"Age-related hearing loss is a very serious problem for patients, and it's also challenging for scientists who study it," said Frisina. "There are many potential reasons. It could be a problem in the brain, or the problem could rest with any number of cells in the inner ear. The causes are more complicated than in a condition like Parkinson's disease, where we know exactly which type of cell dies in which part of the brain."

To begin to understand the genetics of human hearing, the group has been charting the activity of more than 22,000 genes in mice, comparing young mice to their older counterparts. In the study in Apoptosis, the team used two different methods to study gene expression, thanks to funding from the National Institute on Aging and the National Institute on Deafness and Other Communication Disorders, both part of the National Institutes of Health.

First, scientists put more than 300 genes through a broad gene-array study, looking at genes whose activity in the inner ear differed greatly between normal mice and those with hearing loss. Then the team narrowed its focus to 35 such genes, employing a newer technique known as a PCR array to measure activity. Through that test the scientists identified eight genes, all part of the apoptotic process, whose activity differed between the two groups.

Apoptosis itself is certainly nothing new. Such programmed cell death happens constantly – it's the body's way of getting rid of cells that are damaged or no longer needed. When apoptosis happens, a cell's structure breaks up, and the cell disintegrates, with the cell "blebbing," or bulging outward, ultimately blowing apart. It's a familiar process to scientists who know that it also happens as part of the course of many diseases. For instance, after a stroke, many brain cells perceive a threat – low oxygen – and "jump ship," killing themselves and dramatically worsening the effects of the stroke.

The new research is the first demonstration that such activity also occurs in the aging inner ear. The work offers a potential new target as scientists work to find ways to stop age-related hearing loss, such as a drug that would stop cells from committing cell suicide as they age.

"The goal, of course, is to prevent and even reverse age-related hearing loss, which is the third most common chronic medical condition among the elderly," said Frisina, who also has appointments in the departments of Biomedical Engineering and Neurobiology and Anatomy. "Right now, there is nothing we can do to treat it or reverse it, so prevention is the focus."

Frisina advises avoiding exposure to loud noise wherever possible, and wearing ear protection when working with power tools or hunting, for example. Since many medications can damage hearing, patients should speak at length with their doctors about side effects before going on medications, particularly antibiotics, hormone therapy, and drugs that fight cancer. Since conditions like diabetes can also damage hearing, heed the timeless advice to eat right and exercise.

Source: University of Rochester

Explore further: Turning brain cells into skin cells

Related Stories

Turning brain cells into skin cells

October 18, 2017
A new study published in Nature Communications reveals that it is possible to repurpose the function of different mature cells across the body—and harvest new tissue and organs from these cells.

Genes critical for hearing identified

October 12, 2017
Fifty-two previously unidentified genes that are critical for hearing have been found by testing over 3,000 mouse genes. The newly discovered genes will provide insights into the causes of hearing loss in humans, say scientists ...

FDA panel mulls gene therapy for kids with rare eye disease (Update)

October 12, 2017
(HealthDay)—A U.S. Food and Drug Administration advisory panel was poised on Thursday to recommend approval for a gene therapy that could grant the gift of sight to young people with a rare type of inherited vision loss.

Sleep and mood in bipolar disorder

October 12, 2017
Sleep loss can trigger relapse, particularly in the form of mania, in people with a diagnosis of bipolar disorder, finds a study by Cardiff University.

Gene therapy restores hearing and balance in Usher syndrome

September 25, 2017
Scientists from the Institut Pasteur, Inserm, the CNRS, Collège de France, University Pierre et Marie Curie, and University Clermont Auvergne, have recently restored hearing and balance in a mouse model of Usher syndrome ...

Immune system cells protect against CMV-induced hearing loss in mice

September 29, 2017
Immune system cells known as natural killer (NK) cells play an important protective role against hearing loss in mice infected with cytomegalovirus (CMV), according to a new study published in PLOS Pathogens.

Recommended for you

New clues to treat Alagille syndrome from zebrafish

October 18, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies potential new therapeutic avenues for patients with Alagille syndrome. The discovery, published in Nature Communications, ...

Genetic variants associated with obsessive-compulsive disorder identified

October 18, 2017
(Medical Xpress)—An international team of researchers has found evidence of four genes that can be linked to obsessive-compulsive disorder (OCD). In their paper published in the journal Nature Communications, the group ...

An architect gene is involved in the assimilation of breast milk

October 17, 2017
A family of "architect" genes called Hox coordinates the formation of organs and limbs during embryonic life. Geneticists from the University of Geneva (UNIGE) and the Swiss Federal Institute of Technology in Lausanne (EPFL), ...

Study identifies genes responsible for diversity of human skin colors

October 12, 2017
Human populations feature a broad palette of skin tones. But until now, few genes have been shown to contribute to normal variation in skin color, and these had primarily been discovered through studies of European populations.

Team completes atlas of human DNA differences that influence gene expression

October 11, 2017
Researchers funded by the National Institutes of Health (NIH) have completed a detailed atlas documenting the stretches of human DNA that influence gene expression - a key way in which a person's genome gives rise to an observable ...

Genetic advance for male birth control

October 10, 2017
When it comes to birth control, many males turn to two options: condoms or vasectomies. While the two choices are effective, both methods merely focus on blocking the transportation of sperm.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.