Proteins involved in blood vessel dysfunction in type 2 diabetes are identified

October 6, 2008

According to the American Heart Association, three-fourths of people with diabetes die of some form of heart or blood-vessel disease. Previous studies have shown that cardiac function is compromised and cardiovascular diseases are increased in people with type 2 diabetes. Before vascular diseases develop in diabetics, blood-vessel cell dysfunction occurs. Using precise microscopes, University of Missouri researchers are dissecting coronary microvessels and testing which proteins are responsible for inflammation that causes blood-vessel dysfunction. By identifying the proteins that play important roles in blood-vessel dysfunction, they hope to develop new treatments for blood-vessel dysfunction in people with type 2 diabetes.

"We believe that understanding blood-vessel dysfunction in diabetes is critical because the progression of vascular diseases may be significantly reduced if dysfunction is corrected," said Cuihua Zhang, an investigator in the Dalton Cardiovascular Research Center and associate professor of internal medicine in the MU School of Medicine. "The results of our studies may provide new approaches for the treatment of blood-vessel diseases and disorders in type 2 diabetes, such as the possible use of antibodies that work to stop the proteins responsible for inflammation."

Zhang and other researchers tested their hypothesis that tumor necrosis factor-α (TNF-α), a signaling protein involved in inflammation, was responsible for blood-vessel dysfunction in type 2 diabetes. They observed that diabetic mice had elevated levels of TNF. When diabetic mice lacked TNF, their blood vessels functioned normally. They also observed that advanced glycation end products and their receptors (AGE/RAGE), which are proteins and lipids that are thought to contribute to various blood vessel complications, amplified TNF production in diabetes. In patients with diabetes, AGEs accumulate more quickly than normal in the blood and arteries.

"We found that the overproduction of AGE and RAGE contributes to blood-vessel dysfunction in type 2 diabetes," Zhang said. "Changes in the blood vessels caused by these proteins cause oxidative stress and vascular dysfunction that leads to diseases such as heart disease and stroke."

Source: University of Missouri-Columbia

Related Stories

Recommended for you

New cellular approach found to control progression of chronic kidney disease

December 15, 2017
Researchers have demonstrated for the first time that extracellular vesicles - tiny protein-filled structures - isolated from amniotic fluid stem cells (AFSCs) can be used to effectively slow the progression of kidney damage ...

Screening could catch a quarter of hip fractures before they happen

December 15, 2017
Community screening for osteoporosis could prevent more than a quarter of hip fractures in older women - according to new research led by the University of East Anglia (UEA).

Testing shows differences in efficacy of Zika vaccines after one year

December 15, 2017
(Medical Xpress)—A large team of researchers with members from Harvard Medical School, Walter Reed Army Institute of Research, Bioqual Inc. and MIT has found that the efficacy of the three types of Zika vaccines currently ...

How to regulate fecal microbiota transplants

December 15, 2017
(Medical Xpress)—A small team of researchers at the University of Maryland, some with affiliations to the Veterans Affairs Maryland Health Care System, has written and published a Policy Forum piece in the journal Science ...

Urine test developed to test for tuberculosis

December 14, 2017
(Medical Xpress)—An international team of researchers has developed a urine test that can be used to detect tuberculosis (TB) in human patients. In their paper published in Science Translational Medicine, the group describes ...

40 years after first Ebola outbreak, survivors show signs they can stave off new infection

December 14, 2017
Survivors of the first known Ebola outbreak, which occurred in the Democratic Republic of the Congo in 1976, may be key to development of vaccines and therapeutic drugs to treat future outbreaks, according to a new study ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.