Researcher eliminates viral vector in stem cell reprogramming

October 10, 2008,

Shinya Yamanaka MD, PhD, of Kyoto University and the Gladstone Institute of Cardiovascular Disease (GICD) has taken another step forward in improving the possibilities for the practical application of induced pluripotent stem (iPS) cell technology.

Previously, Dr. Yamanaka had shown that adult cells can be reprogrammed to become embryonic stem cell–like using a cancer-causing oncogene as one of the four genes required to reprogram the cells, and a virus to transfer the genes into the cells. In the last year, Dr. Yamanaka and other labs showed that the oncogene, c-Myc, is not needed. However the use of viruses that integrate into the genome prohibit use of iPS cells for regenerative medicine because of safety concerns: its integration into the cell's genome might activate or inactivate critical host genes.

Now Dr. Yamanaka's laboratory in Kyoto has eliminated the need for the virus. In a report published this week in Science, they showed that the critical genes can be effectively introduced without using a virus. The ability to reprogram adult cells into iPS cells without viral integration into the genome also lays to rest concerns that the reprogramming event might be dependent upon viral integration into specific genomic loci that could mediate the genetic switch.

"The iPS field and stem cell research in general is progressing rapidly," said GICD Director Deepak Srivastava, MD. "But, as Shinya has shown, each step forward reveals a new set of challenges."

Dr. Yamanka's team began this series of experiments by replacing the retrovirus with an adenoviral vector. While transfections with the genes on separate vectors didn't work, they did work when the genes were arranged in a specific order on a single vector. The same arrangement worked when the genes were incorporated into a plasmid.

To determine if the plasmid-mediated reprogrammed cells were pluripotent, the scientists transplanted the cells under the skin of immunocompromised mice. The resulting tumors contained a wide variety of cell types from all three germ layers. iPS cells injected into embryos resulted in chimeric mice with the injected cells contributing to almost all cell types.

Still, other problems remain to be solved. The efficiency of the gene transfer with the plasmid was lower than with the retrovirus. Nevertheless, this significant step moves us closer to realizing the promise of stem cells in the understanding and eventual cure of diseases.

Source: Gladstone Institutes

Explore further: Discovery of the 'pioneer' that opens the genome

Related Stories

Discovery of the 'pioneer' that opens the genome

January 23, 2018
Our genome contains all the information necessary to form a complete human being. This information, encoded in the genome's DNA, stretches over one to two metres long but still manages to squeeze into a cell about 100 times ...

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

Energy storehouses in the brain may be source of Alzheimer's, targets of new therapy

January 23, 2018
Alzheimer's disease, a severely debilitating and ultimately fatal brain disorder, affects millions worldwide. To date, clinical efforts to find a cure or adequate treatment have met with dispiriting failure.

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

New approach attacks 'undruggable' cancers from the outside in

January 23, 2018
Cancer researchers have made great strides in developing targeted therapies that treat the specific genetic mutations underlying a patient's cancer. However, many of the most common cancer-causing genes are so central to ...

Staying awake—the surprisingly effective way to treat depression

January 23, 2018
The first sign that something is happening is Angelina's hands. As she chats to the nurse in Italian, she begins to gesticulate, jabbing, moulding and circling the air with her fingers. As the minutes pass and Angelina becomes ...

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

CWFlink
1 / 5 (3) Oct 10, 2008
"...adult cells can be reprogrammed to become embryonic stem cell-like..."

Would all the scientists and politicians who just a few short years ago comdemned so many of us as idiots for being against "embryonic stem cell research", please stand up and admit their error? They owe many of us an appology.

The greatest lesson of the history of science: often the only reason for calling someone an expert is simply because their ego demands it.

We ALL have SO VERY MUCH to learn!
Yogaman
5 / 5 (1) Oct 10, 2008
OK, I'm suckered in by CWFlink's somewhat defensive flame bait, so please forgive this comment not being about the article.

I don't wish to call anyone an idiot, but obstructionist seems to fit anyone who was opposed to the use of discarded fertilized eggs from fertility caches or from aborted fetuses, as examples.

And, because that obstructionism certainly has delayed cures and thus cost lives, would those obstructionists "please stand up and admit their error?"

And is ego really the greatest lesson of the history of science? I think not. ;-)

At least we can close in agreement:

Given the good news for our increasingly diminishing attention spans that there remains "SO VERY MUCH to learn," as you announce, let us apply the scientific method apace!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.