New research sheds light on fly sleep circuit

November 26, 2008

In a novel study appearing this week in Neuron, Brandeis researchers identify for the first time a specific set of wake-promoting neurons in fruit flies that are analogous to cells in the much more complex sleep circuit in humans. The study demonstrates that in flies, as in mammals, the sleep circuit is intimately linked to the circadian clock and that the brain's strategies to govern sleep are evolutionarily ancient.

In the study, researchers quieted ventral lateral neurons (LNvs) and induced sleep in the flies by essentially altering the excitability of these cells with GABA, a major inhibitory neurotransmitter. GABA controls sleep onset and duration by opposing arousal. The same mechanism governs sleep in humans, explained Katherine Parisky, a post-doctoral researcher who coauthored the study led by Brandeis biologist Leslie Griffith's laboratory.

When it is time to wake up, the LNvs are believed to release a neuropeptide known as PDF, rousing the cells, and in turn, the flies. The cycle starts over again when GABA kicks in to quiet these neurons and give the flies a good night's sleep. The study found that mutant flies without PDF or its receptor were hypersomnolent.

The researchers' findings have implications for how sleep-promoting drugs are tested and developed. Currently, drugs that target GABA receptors are among the most widely-used sleep-promoting agents.

"Normally, to treat insomnia in humans, you use global drugs that suppress GABA throughout the brain," explained Griffith. "But it would be ideal to suppress only cells that are part of the sleep circuit."

Sleep problems, from insomnia to narcolepsy, affect millions of people and are extremely costly in both economic and human health terms. The next stage of research will involve researching how PDF controls wakefulness, said Parisky.

"We're taking apart the circuit bit by bit to see how it affects sleep," she said. "We already know that in humans, some people have problems falling asleep, while others can't stay asleep, and there are probably two different mechanisms for these behaviors in flies, as well," Parisky explained.

Fruit flies offer an excellent model organism in which to study sleep because their sleep circuit is relatively simple yet seemingly very similar to the sleep circuit in humans. A greater understanding of how the sleep circuit works in flies could help scientists to design and develop drugs that strategically target different sleep problems.

Source: Brandeis University

Explore further: Scientists identify the switch that says it's time to sleep

Related Stories

Scientists identify the switch that says it's time to sleep

February 19, 2014
The switch in the brain that sends us off to sleep has been identified by researchers at Oxford University's Centre for Neural Circuits and Behaviour in a study in fruit flies.

Even in fruit flies, enriched learning drives need for sleep

June 23, 2011
Just like human teenagers, fruit flies that spend a day buzzing around the "fly mall" with their companions need more sleep. That's because the environment makes their brain circuits grow dense new synapses and they need ...

Connecting sleep deficits among young fruit flies to disruption in mating later in life

April 17, 2014
Mom always said you need your sleep, and it turns out, she was right. According to a new study published in Science this week from researchers at the Perelman School of Medicine at the University of Pennsylvania, lack of ...

SHY hypothesis explains that sleep is the price we pay for learning

January 9, 2014
Why do animals ranging from fruit flies to humans all need to sleep? After all, sleep disconnects them from their environment, puts them at risk and keeps them from seeking food or mates for large parts of the day.

Fruit fly study identifies brain circuit that drives daily cycles of rest, activity

April 24, 2014
Amita Sehgal, PhD, a professor of Neuroscience at the Perelman School of Medicine, University of Pennsylvania, describes in Cell a circuit in the brain of fruit flies that controls their daily, rhythmic behavior of rest and ...

Study unpeels one layer of the mystery of sleep as they develop understanding of the sleep homeostat

August 3, 2016
Oxford University researchers have discovered what causes a switch to flip in our brains and wake us up. The discovery, published in the journal Nature, brings us closer to understanding the mystery of sleep.

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

HenisDov
not rated yet Nov 27, 2008
Again And Again: Understanding Sleep


A. New research sheds light on fly sleep circuit

http://www.eureka...2508.php

Brandeis scientists research fly sleep to advance understanding of human sleep and its disorders


B. Sleep And Memories, Blueprints And Organisms

http://www.the-sc...age#1106

The common sad observation is that the science establishment and its publications refer to, and comprehend, genes-genomes organisms in pre-Copernicus pre-Galileo term "genetic codes"... with stubborn insistence on seeing the naked emperor's new clothes, on seeing genes-genomes not as the organisms they obviously are but as "DNA sequences, genetic materials, genetic blueprints..."


Dov Henis

(A DH Comment From The 22nd Century)
http://blog.360.y...Q--?cq=1

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.