Combining targeted therapy drugs may treat previously resistant tumors

November 30, 2008

A team of cancer researchers from several Boston academic medical centers has discovered a potential treatment for a group of tumors that have resisted previous targeted therapy approaches.

In their Nature Medicine report, which is receiving early online release, investigators from Dana-Farber Cancer Institute (DFCI), Massachusetts General Hospital (MGH) Cancer Center, and Beth Israel Deaconess Medical Center (BIDMC) Cancer Center report that combining two different kinase inhibitors – drugs that interfere with specific cell-growth pathways – led to significant tumor shrinkage in mice with lung cancer driven by mutations in the K-Ras gene. In addition to their association with nearly 30 percent of cases of non-small-cell lung cancer – the leading cause of cancer deaths in the U.S. – K-Ras mutations are involved in many cases of colon cancer and most pancreatic cancers, which are extremely resistant to treatment.

"Finding a way to effectively treat K-Ras-mutated cancers would be a huge advance in solid tumor oncology, since these mutations are common in several incurable cancers," says Jeffrey Engelman, MD, PhD, of the MGH Cancer Center, one of the report's co-lead authors. "Cancers with K-Ras mutations have been resistant to all targeted therapies to date, and it is exciting to learn that a combination of PI3K and MEK inhibitors, two families of drugs currently in clinical development, may be highly effective in these cancers."

The current study began with a focus on the PI3K signaling pathway, which is key to cell survival and known to control cellular motility and adhesion. PI3K mutations have caused tumor development in laboratory studies, but their role had not yet been studied in an animal model. The research team developed a transgenic mouse in which administration of the drug doxycycline induces the expression of cancer-associated PI3K mutations, leading to development of lung tumors.

Treatment of those animals with an investigational PI3K inhibitor did lead to rapid tumor regression. Since previous studies suggested that PI3K inhibition might also block K-Ras-induced tumor development, the investigators also tested the PI3K inhibitor in mice with K-Ras-stimulated tumors. That treatment was ineffective, but since K-Ras also activates the MEK/ERK signalling pathway, the researchers treated the animals with an investigational MEK inhibitor and with a combination of both drugs. Treatment with the MEK inhibitor alone caused only a modest reduction in tumor size, but combined treatment with both agents caused the K-Ras-stimulated lung tumors to virtually disappear.

"For several years we have known that K-Ras activates two major pathways – the PI3K pathway and the MEK/MAPK pathway – and that these pathways have many redundant functions in tumor growth and survival," says Lewis Cantley, PhD, of the BIDMC Cancer Center, one of the study's co-corresponding authors. "Inhibitors of both of these pathways are now in clinical trials, and in this paper we show that, while either agent alone has a minor effect on K-Ras-driven tumors in mice, combining inhibitors of both pathways eradicates these tumors with minimal toxicity."

Kwok-Kin Wong, MD, PhD, of DFCI, also a co-corresponding author, adds, "The results of our study are truly remarkable and provide a strong and compelling scientific rationale to test this combination therapy in human phase 1 and 2 trials. This work would not have been possible without the highly productive collaboration between our laboratories at Mass. General, Beth Israel-Deaconess and Dana-Farber." Wong is an assistant professor of Medicine at Harvard Medical School, where Engelman is also an assistant professor in Medicine, and Cantley is the Castle Professor of Medicine.

The researchers are hoping to advance towards clinical trials by testing combination therapy against other models of K-Ras-mutated cancer, including those that involve additional mutations in other tumor-associated genes, and to investigate whether K-Ras-associated tumors will become resistant to combination therapy, a problem that has plagued other targeted cancer therapies.

Source: Massachusetts General Hospital

Explore further: A new molecule to inhibit lymphoma growth

Related Stories

A new molecule to inhibit lymphoma growth

November 28, 2017
The prestigious scientific journal Clinical Cancer Research has published a study conducted by the research group led by Dr. Francesco Bertoni of the Institute of Oncology Research (IOR, affiliated to USI Università della ...

PARP inhibitor may be effective against some TNBC lacking BRCA mutations

November 1, 2017
The investigational PARP inhibitor talazoparib caused regression of patient-derived xenografts (PDXs) of triple-negative breast cancers (TNBC) that had BRCA mutations and also those that did not have BRCA mutations but had ...

Diverse genetic alterations found in triple-negative breast cancers after neoadjuvant chemotherapy

December 7, 2012
Many different genetic alterations were detected in tumor cells left behind after patients with triple-negative breast cancer were treated with chemotherapy prior to surgery (neoadjuvant chemotherapy), according to data presented ...

Therapy exploits 'addiction' of leukemia cells

April 16, 2012
A new study describes a therapeutic approach to halting cancer progression by exploiting a previously unrecognized "addiction" of leukemia cells to specific signaling molecules. The research, published by Cell Press online ...

New breast cancer model of mutant PI3K recapitulates features of human breast cancer

July 12, 2011
Scientists from the Friedrich Miescher Institute for Biomedical Research have shown that a mutation in the lipid kinase PI3K, which occurs in about 30% of human breast cancers, itself evokes different forms of breast cancer. ...

Common genetic alteration found in head and neck cancers may not be key to effective treatment

January 29, 2013
Although a large majority of head and neck cancers have a deregulation of the PI3K/AKT/mTOR pathway, data recently published in Cancer Research, a journal of the American Association for Cancer Research, indicated that deregulation ...

Recommended for you

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

Liquid biopsy results differed substantially between two providers

December 14, 2017
Two Johns Hopkins prostate cancer researchers found significant disparities when they submitted identical patient samples to two different commercial liquid biopsy providers. Liquid biopsy is a new and noninvasive alternative ...

Testing the accuracy of FDA-approved and lab-developed cancer genetics tests

December 14, 2017
Cancer molecular testing can drive clinical decision making and help a clinician determine if a patient is a good candidate for a targeted therapeutic drug. Clinical tests for common cancer causing-mutations in the genes ...

Newest data links inflammation to chemo-brain

December 14, 2017
Inflammation in the blood plays a key role in "chemo-brain," according to a published pilot study that provides evidence for what scientists have long believed.

One in five young colon cancer patients have genetic link

December 13, 2017
As doctors grapple with increasing rates of colorectal cancers in young people, new research from the University of Michigan may offer some insight into how the disease developed and how to prevent further cancers. Researchers ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Phaze
5 / 5 (1) Nov 30, 2008
getting sick of mice mice mice. the fda is costing treatment out or reach. This may not be needed so much when the 1k genome is done and we can get sequenced in mass. the computer power to
understand it is another issue that doesn't receive enough attention
gdpawel
not rated yet Dec 01, 2008
Tailoring The Therapy To The Cancer

In some cancer cells, Epidermal Growth Factor Receptor (EGFR) triggers uncontrolled cell division (enzyme inhibitor). There are targeted drugs that inhibit EGFR. There are rare patients that respond very well.

However, cancer cells evolve resistance to some of these targeted drugs by multiple mechanisms related to genetic alterations both within the EGFR gene and at other sites.

For example, over-activity of the insulin growth factor signaling pathway can confer resistance (mutations involving the oncogene k-Ras are also associated with resistance).

Cancer cells often have many mutations in many different pathways, so even if one route is shut down by a targeted treatment, the cancer cell may be able to use other routes.

Targeted therapies are typically not very effective when used singularly or even in combination with conventional chemotherapies. The targets of many of these drugs are so narrow that cancer cells are likely to eventually find ways to bypass them.

Physicians may have to combine several targeted treatments to try an achieve cures or durable responses for more complicated tumors like those that occur in the breast, colon and lung.

These targeted therapies produce limited results because they can help a relatively small subgroup of cancer patients, and tests to pinpoint those patients are needed. With targeted therapy, the trick is figuring out which patients will respond.

We have targeted agents that will do some good, and the challenge is to figure out which patients to give them to. There are targeted assays to match targeted cancer therapies to those cancer patients.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.