Scientists find key to keeping killer T cells in prime shape for fighting infection, cancer

November 30, 2008

Like tuning a violin to produce strong, elegant notes, researchers at The Wistar Institute have found multiple receptors on the outside of the body's killer immune system cells which they believe can be selectively targeted to keep the cells in superb infection- and disease-fighting condition.

In a study published online November 30 in Nature Immunology, the researchers describe their discovery of seven different receptors on T cells that can tamp down immune responses during a prolonged battle with an infectious pathogen or against developing cancer.

Chronic over-stimulation of the immune system can lead to poor control of infections and cancer, so the results explain why it is that these key immune cells gradually become "exhausted" and ineffective over time, says the study's lead author, E. John Wherry, Ph.D., an assistant professor in Wistar's Immunology Program.

Wherry had recently been involved in discovering a single receptor involved in turning off T cells but this new study shows that at least six more receptors can also restrain or negatively regulate immune responses. According to Wherry, a key finding is that these new receptors likely control different aspects of T cell responses, such as division or expansion, controlling viral replication, and local killing of infected cells versus secretion of long-range active antiviral proteins.

"This amount of control over T cells' response is remarkable. It suggests that layers of negative regulation exist on exhausted T cells from co-expression of multiple inhibitory receptors," he says. "My bet is that these receptors inhibit different aspects of the T cells' response, but that the net result of their activation is to turn specific T cell populations off.

"We are starting to see a picture emerging of a really tuneable array of inhibitory receptors expressed on T cells," Wherry says. "That suggests it may be possible to not only dramatically enhance antiviral or antitumor T cell responses, but also to fine tune which response you want to enhance in order to reverse T cell exhaustion and continue fighting an infection or disease.

"This presents us with a great clinical opportunity," Wherry says. "T cells have a lot of weapons at their disposal to control viral infection and most of them are disarmed when these cells become exhausted. It may be possible to selectively rearm T cells while generally reinvigorating them."

The researchers made their discoveries in a mouse model of chronic infection with lymphocytic choriomeningitis virus. They had earlier found that a receptor known as programmed death-1 (PD-1) was highly expressed by exhausted T cells from chronically infected mice but not from mice that had cleared the infection. In a study published September 15 in the Proceedings of the National Academy of Sciences (PNAS), the researchers extended previous studies on the role of the PD-1 pathway in regulating T cell exhaustion. In these studies, blocking PD-1 increased T cell response, but not completely, so the researchers suspected other negative regulatory pathways were activated as well.

In the newest report in Nature Immunology, Wherry and colleagues compared the global patterns of gene expression for exhausted killer T cells compared to other types of T cells (naïve, effector and memory). A "nearest neighbor" analysis to PD-1 revealed up-regulation of six other inhibitory receptor genes. They are LAG3, 2B4, CD160, CTLA-4, PIR-B and GP49. While the function of many of these receptors has been characterized, they had not been known to play a role in chronic viral infection. LAG-3, for example, is associated with an antitumor response. These observations may explain why PD-1 blockade did not completely restore T cell responses in previous work.

The investigators discovered that the severity of chronic infection correlated with the number and intensity of inhibitory receptor expression, suggesting a cumulative impact of inhibitory receptor expression. They also found that blocking both PD-1 and LAG-3 together led to substantially greater improvement in T cell responses and viral control compared to either blockade alone.

"The goal now is to understand the pathways the receptors control, and then to learn how to fine tune reversal of exhaustion by targeting pathways that selectively control the desired type of T cell response," Wherry says.

Source: The Wistar Institute

Explore further: Researchers use a molecular Trojan horse to deliver chemotherapeutic drug to cancer cells

Related Stories

Researchers use a molecular Trojan horse to deliver chemotherapeutic drug to cancer cells

February 23, 2018
A research team at the University of California, Riverside has discovered a way for chemotherapy drug paclitaxel to target migrating, or circulating, cancer cells, which are responsible for the development of tumor metastases.

New strategy to target transcription factor STAT5 to combat leukaemia

February 23, 2018
Acute myeloid leukaemia is the most common type of acute cancer of the blood and bone marrow in adults. AML progresses quickly and only 26 percent of the patients survive longer than five years as resistance against established ...

Mitochondrial mutations and disease

February 23, 2018
Mitochondria are cellular organelles with their own DNA. Their role in power generation makes them susceptible to oxidative damage, including the formation of DNA-damaging chemical complexes called adducts.

Some viruses produce insulin-like hormones that can stimulate human cells—and have potential to cause disease

February 19, 2018
Every cell in your body responds to the hormone insulin, and if that process starts to fail, you get diabetes. In an unexpected finding, scientists at Joslin Diabetes Center have identified four viruses that can produce insulin-like ...

Immune cells hold their memory of how to respond to allergens in a surprising way

February 22, 2018
Understanding how the immune system remembers allergy-causing antigens could help prevent severe reactions.

Why get a filling when you could print a new smile?

February 20, 2018
Twinges. Painful teeth. About one in 10 people suffer from dental sensitivity caused by worn enamel. But rather than providing short-term solutions like special toothpastes or fillings, new techniques could print whole new ...

Recommended for you

Ambitious global virome project could mark end of pandemic era

February 23, 2018
Rather than wait for viruses like Ebola, SARS and Zika to become outbreaks that force the world to react, a new global initiative seeks to proactively identify, prepare for and stop viral threats before they become pandemics.

Forecasting antibiotic resistance with a 'weather map' of local data

February 23, 2018
The resistance that infectious microbes have to antibiotics makes it difficult for physicians to confidently select the right drug to treat an infection. And that resistance is dynamic: It changes from year to year and varies ...

Scientists gain new insight on how antibodies interact with widespread respiratory virus

February 22, 2018
Scientists have found and characterized the activity of four antibodies produced by the human immune system that target an important protein found in respiratory syncytial virus (RSV), according to new research published ...

Study reveals how kidney disease happens

February 22, 2018
Monash researchers have solved a mystery, revealing how certain immune cells work together to instigate autoimmune kidney disease.

Past encounters with the flu shape vaccine response

February 20, 2018
New research on why the influenza vaccine was only modestly effective in recent years shows that immune history with the flu influences a person's response to the vaccine.

Building better tiny kidneys to test drugs and help people avoid dialysis

February 16, 2018
A free online kidney atlas built by USC researchers empowers stem cell scientists everywhere to generate more human-like tiny kidneys for testing new drugs and creating renal replacement therapies.

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

tkjtkj
4 / 5 (1) Nov 30, 2008
i'd have rated this more then my '3'
were it not for bad reporting:
".. find the key..." is
completely unsubstantiated by the
article! "Possible key", perhaps.
Junk reporting does no favors for
good science.

E_L_Earnhardt
not rated yet Nov 30, 2008
Computer programers would better understand the functions and malfunctions of the cell, but, alas, chemists control all funding!
Phaze
not rated yet Nov 30, 2008
mass gene sequencing and dedicated peta scale computers are required. AI can find the answers

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.