Fruit fly research may lead to better understanding of human heart disease

December 2, 2008,

Researchers at the Burnham Institute for Medical Research (Burnham) have shown in both fruit flies and humans that genes involved in embryonic heart development are also integral to adult heart function. The study, led by Rolf Bodmer, Ph.D., was published in Proceedings of National Academy of Sciences.

Dr. Bodmer's lab has discovered that in the fruit fly Drosophila, interactions between cardiac nmr genes (TBX20 in humans) and other transcription factors, are involved in regulating cardiac performance, rhythm and heart muscle structure. TBX20, along with other congenital heart disease genes, has been previously shown to be critical to the development of the embryonic heart first in flies and subsequently in mouse models.

However, this study is the first indication that nmr/TBX20 also plays a role in adult heart function. These genes are highly conserved from flies to humans and Bodmer's research showed that some human individuals with structural congenital heart abnormalities, as well as problems with heart function, including arrhythmias and heart failure, also exhibited TBX20 mutations.

"These studies demonstrate that Drosophila has potential as a model system for exploring the genetics underlying human heart disease and for identifying new candidate genes that potentially cause heart disease," said Dr. Bodmer.

To make the connection between human and Drosophila heart malfunction, human subjects with structural congenital heart disease, as well as heart muscle dysfunction were examined. In 96 human subjects with clinical evidence of dilated cardiomyopathy (this causes a weakened heart that cannot pump blood efficiently), DNA analysis identified three different variants of the gene TBX20, suggesting TBX20 may be involved in the development of cardiomyopathy. In addition, TBX20 variants were identified in four children with atrial septal defects.

Source: Burnham Institute

Related Stories

Recommended for you

Add broken DNA repair to the list of inherited colorectal cancer risk factors

February 23, 2018
An analysis of nearly 3,800 colorectal cancer patients—the largest germline risk study for this cancer to date—reveals opportunities for improved risk screening and, possibly, treatment.

Team identifies genetic defect that may cause rare movement disorder

February 22, 2018
A Massachusetts General Hospital (MGH)-led research team has found that a defect in transcription of the TAF1 gene may be the cause of X-linked dystonia parkinsonism (XDP), a rare and severe neurodegenerative disease. The ...

Defects on regulators of disease-causing proteins can cause neurological disease

February 22, 2018
When the protein Ataxin1 accumulates in neurons it causes a neurological condition called spinocerebellar ataxia type 1 (SCA1), a disease characterized by progressive problems with balance. Ataxin1 accumulates because of ...

15 new genes identified that shape human faces

February 20, 2018
Researchers from KU Leuven (Belgium) and the universities of Pittsburgh, Stanford, and Penn State have identified 15 genes that determine facial features. The findings were published in Nature Genetics.

New algorithm can pinpoint mutations favored by natural selection in large sections of the human genome

February 20, 2018
A team of scientists has developed an algorithm that can accurately pinpoint, in large regions of the human genome, mutations favored by natural selection. The finding provides deeper insight into how evolution works, and ...

New software helps detect adaptive genetic mutations

February 20, 2018
Researchers from Brown University have developed a new method for sifting through genomic data in search of genetic variants that have helped populations adapt to their environments. The technique, dubbed SWIF(r), could be ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.