Researchers map new path to colon cancer therapy

December 15, 2008

University of Texas Medical Branch at Galveston researchers have identified a promising new target in the battle against colorectal cancer — a biochemical pathway critical to the spread of tumors to new locations in the body. If this "survival pathway" can be successfully blocked under clinical conditions, the result would be a much-needed new therapy for colorectal cancer, the second leading cause of cancer death in the United States.

The researchers' findings, published online the week of December 15 in the Proceedings of the National Academy of Sciences, focus on an enzyme known as Akt2, which is often also found at high levels in association with prostate, ovarian, breast and pancreatic cancers.

Drawing on data from human colorectal cancer tissue samples, athymic "nude" mouse experiments and cell-culture studies and probing enzyme interactions with small interfering RNA, the scientists determined that Akt2 was critical to the survival of colorectal cancer cells in the late stages of the dangerous process of metastasis— the development of secondary tumors at a distance from a primary tumor. At the same time, they also mapped the enzyme's interactions with other important proteins involved in colorectal cancer metastasis, laying the groundwork for the development of new therapies to stop the cancer's spread.

"Metastasis is a really complicated process," said Dr. Piotr G. Rychahou, lead author of the paper and an instructor in the UTMB department of surgery. "Through a complex cascade of events, cancer cells escape from the original tumor and invade surrounding tissues until they reach a blood or lymphatic vessel. Next, they cross the wall of the vessel and enter the circulation in order to reach a target organ—again crossing through the vessel wall —and grow into secondary tumors that we actually detect in patients. To survive this hazardous solo journey, invade a foreign organ and proliferate there, cancer cells need support from intracellular survival pathways. Akt2 is part of the PI3-kinase / Akt pathway, one of the strongest pro-survival signaling pathways."

Rychahou and his colleagues, including senior author and director of the UTMB Sealy Center for Cancer Cell Biology Dr. B. Mark Evers, suspected from previous work that Akt2 was significant in colorectal cancer metastasis. To profile the enzyme's involvement in metastasis, they started at the end of the metastatic road: examining tumor samples from patients with metastatic colorectal cancer and confirming that high levels of the enzyme were present.

Next, they conducted a series of experiments with athymic "nude" mice (mice bred to lack an immune response), injecting them with different colorectal cancer cell lines and using custom-designed siRNA treatments to decrease and increase the activity of Akt2, its relative Akt1 and the tumor-suppressing protein PTEN.

"When we decreased the Akt2 expression, we found there was really a significant difference," Rychahou said. "Akt2 is essential for the later stages of colon tumor metastasis, but we also found that increased Akt2 alone is not enough for the growth of secondary tumors. For that, you need continuous PI3-kinase pathway stimulation and activation which can occur with absence of PTEN in these tumors."

Discoveries such as these, according to Evers, are "crucial to providing more directed therapies for the treatment of colorectal cancer metastasis based upon inhibition of specific components of the PI3-kinase pathway, thus allowing for a more personalized treatment regimen with potentially fewer side effects"

Provided by University of Texas Medical Branch at Galveston

Related Stories

Recommended for you

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop blood test that spots tumor-derived DNA in people with early-stage cancers

August 16, 2017
In a bid to detect cancers early and in a noninvasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

Popular immunotherapy target turns out to have a surprising buddy

August 16, 2017
The majority of current cancer immunotherapies focus on PD-L1. This well studied protein turns out to be controlled by a partner, CMTM6, a previously unexplored molecule that is now suddenly also a potential therapeutic target. ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

MikeB
not rated yet Dec 15, 2008
Researchers map new path to colon cancer therapy

This is one map I don't want to keep in my glove compartment.
gpa
not rated yet Dec 16, 2008
Junk publishing??
> This is very likely one of those false quack "cures". See:
http://www.google...ource=ig&hl=en&rlz=1G1GGLQ_ENUS279&q=National Health Federation&btnG=Google Search&aq=f

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.