Scientists succeed through stem cell therapy in reversing brain birth defects

December 29, 2008
New brain cells (green stain) induced in the heroin damaged brain by transplantation of neural stem cells. Credit: The Hebrew University of Jerusalem

Scientists at the Hebrew University of Jerusalem have succeeded in reversing brain birth defects in animal models, using stem cells to replace defective brain cells.

The work of Prof. Joseph Yanai and his associates at the Hebrew University-Hadassah Medical School was presented at the Tel Aviv Stem Cells Conference last spring and is expected to be presented and published nest year at the seventh annual meeting of the International Society for Stem Cell Research in Barcelona, Spain.

Involved in the project with Prof. Yanai are Prof. Tamir Ben-Hur, head of the Department of Neurology at the Hebrew University-Hadassah Medical School, and his group, as well as Prof. Ted Slotkin at Duke University in North Carolina, where Prof. Yanai is an adjunct professor.

Neural and behavioral birth defects, such as learning disabilities, are particularly difficult to treat, compared to defects with known cause factors such as Parkinson's or Alzheimer's disease, because the prenatal teratogen - the substances that cause the abnormalities -- act diffusely in the fetal brain, resulting in multiple defects.

Prof. Yanai and his associates were able to overcome this obstacle in laboratory tests with mice by using mouse embryonic neural stem cells. These cells migrate in the brain, search for the deficiency that caused the defect, and then differentiate into becoming the cells needed to repair the damage.

Generally speaking, stem cells may develop into any type of cell in the body, however at a certain point they begin to commit to a general function, such as neural stem cells, destined to play a role in the brain/ nervous system. At more advanced developmental stages, the neural stem cells take on an even more specific role as neural or glial (supporting) cells within the brain/ nervous system.

In the researchers' animal model, they were able to reverse learning deficits in the offspring of pregnant mice who were exposed to organophosphate (a pesticide) and heroin. This was done by direct neural stem cell transplantation into the brains of the offspring. The recovery was almost one hundred percent, as proved in behavioral tests in which the treated animals improved to normal behavior and learning scores after the transplantation. On the molecular level, brain chemistry of the treated animals was also restored to normal.

The researchers went one step further. Puzzled by the stem cells' ability to work even in those cases where most of them died out in the host brain, the scientists went on to discover that the neural stem cells succeed before they die in inducing the host brain itself to produce large number of stem cells which repair the damage. This discovery, finally settling a major question in stem cell research, evoked great interest and was published earlier this year in one of the leading journals in the field, Molecular Psychiatry.

The scientists are now in the midst of developing procedures for the least invasive method for administering the neural stem cells, which is probably via blood vessels, thus making the therapy practical and clinically feasible.

Normally, stem cells are derived from individuals genetically different from the patient to be transplanted, and therefore the efficacy of the treatment suffers from immunological rejection. For this reason, another important avenue of the ongoing study, toward the same goals, will be to eliminate the immunological rejection of the transplant, which will become possible by taking cells from the patient's own body -- from a place where they are easily obtained -- by manipulating them to return to their stem cell phase of development, and then transplanting them into the patient's brain via the blood stream. One important advantage of this approach will be to eliminate the controversial ethical issues involved in the use of embryo stem cells.

Source: The Hebrew University of Jerusalem

Explore further: ALS treatment delays disease and extends life in rats

Related Stories

ALS treatment delays disease and extends life in rats

April 18, 2018
Investigators at Cedars-Sinai are exploring a new way to treat amyotrophic lateral sclerosis (ALS) by transplanting specially engineered neural cells into the brain. Their new study shows the transplanted cells delayed disease ...

Does running a marathon suppress your immune system?

April 18, 2018
It is commonly believed that some forms of exercise, such as endurance events, suppress your immune system and leave you at risk of infections, like the common cold. However, our latest review of the evidence suggests that ...

Lung stem cells repair airways after injury

April 12, 2018
The human airway is a system of branching tubes that connects the nose and mouth with the lungs and allows us to inhale air, extract the vital oxygen, and exhale the waste product carbon dioxide. A layer of epithelial cells ...

Researchers develop new process to differentiate stem cells

April 17, 2018
Neck and back pain are debilitating and expensive: an estimated 80 percent of adults will suffer one or both at some point during their lives, racking up $86 billion in medical costs and missed work in the United States alone. ...

Researchers succeed in cultivating cartilage from stem cells

April 17, 2018
Researchers have produced stable joint cartilage from adult stem cells originating from bone marrow. This was made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers ...

Study reports possible novel method for stopping untreatable pediatric brain cancers

April 17, 2018
Researchers used an experimental molecular therapy in preclinical laboratory tests to effectively treat several types of deadly pediatric brain cancer and now propose advancing the treatment to clinical testing in children.

Recommended for you

Researchers identify blood biomarkers that may help diagnose, confirm concussions

April 20, 2018
Researchers from the University of California, Irvine, Georgetown University and the University of Rochester have found that specific small molecules in blood plasma may be useful in determining whether someone has sustained ...

DOR protein deficiency favors the development of obesity

April 20, 2018
Obesity is a world health problem. Excessive accumulation of fat tissue (adipose tissue) increases the risk of cardiovascular disease, hypertension, diabetes and some types of cancer. However, some obese individuals are less ...

Stem-cell technology aids 3-D printed cartilage repair

April 20, 2018
Novel stem-cell technology developed at Swinburne will be used to grow the massive number of stem cells required for a new hand-held 3-D printer that will enable surgeons to create patient-specific bone and cartilage.

Enduring cold temperatures alters fat cell epigenetics

April 19, 2018
A new study in fat cells has revealed a molecular mechanism that controls how lifestyle choices and the external environment affect gene expression. This mechanism includes potential targets for next-generation drug discovery ...

Defect in debilitating neurodegenerative disease reversed in mouse nerves

April 19, 2018
Scientists have developed a new drug compound that shows promise as a future treatment for Charcot-Marie-Tooth disease, an inherited, often painful neurodegenerative condition that affects nerves in the hands, arms, feet ...

Molecule that dilates blood vessels hints at new way to treat heart disease

April 19, 2018
Americans die of heart or cardiovascular disease at an alarming rate. In fact, heart attacks, strokes and related diseases will kill an estimated 610,000 Americans this year alone. Some medications help, but to better tackle ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.