Studies point to novel target for treating arrhythmias

January 21, 2009,

Abnormal heart rhythms - arrhythmias - are killers. They strike without warning, causing sudden cardiac death, which accounts for about 10 percent of all deaths in the United States.

Vanderbilt investigators have discovered a new molecular mechanism associated with arrhythmias. Their findings, reported in The Journal of Clinical Investigation, could lead to novel arrhythmia treatments.

"The current antiarrhythmic drugs do not prolong life," said Björn Knollmann, M.D., Ph.D., associate professor of Medicine and Pharmacology and the senior author of the current report. "There's a large need for new approaches to antiarrhythmic therapy."

In their quest to understand how irregular heart rhythms arise - as a way to find new molecular targets for treatment - Knollmann and his colleagues have focused on the role of calcium inside heart muscle cells.

Calcium is central to the contractile cycle. After it is released from its storage sites in heart muscle cells, it interacts with proteins called troponins, part of the cell's myofilament contractile apparatus. The interaction of calcium with troponins regulates myofilament activation and contraction.

Mutations in troponin genes had been linked to inherited forms of hypertrophic cardiomyopathy (HCM), which carries a high risk of sudden cardiac death. HCM is perhaps most famous as a cause of sudden cardiac death in young athletes, but it can affect individuals of any age.

In previous studies, Knollmann's team demonstrated that troponin mutations associated with HCM increase the sensitivity of the troponins to calcium - they bind calcium more readily, which activates the myofilaments more easily and results in stronger contractions.

Increased myofilament calcium sensitivity has also been found in acquired heart diseases, such as heart failure, that have a high incidence of sudden cardiac death, Knollmann said. He and his colleagues proposed that increased myofilament calcium sensitivity contributes to arrhythmia susceptibility.

The researchers examined the heart rhythms of mice expressing various troponin mutants that cause HCM and showed that the mice develop ventricular tachycardia (a particular arrhythmia). The risk for this arrhythmia was directly related to the degree of calcium sensitization caused by the troponin mutation: the higher the calcium sensitivity, the greater the arrhythmia risk.

The investigators then tested whether or not a calcium-sensitizing drug - infused into the mouse heart - would cause arrhythmias. It did.

"We could make a normal heart prone to arrhythmias simply by changing the sensitivity of the myofilaments to calcium," Knollmann said.

Calcium-sensitizing drugs are used clinically in Europe and Japan to treat heart failure (because they increase the strength of contraction), but they have not been approved for use in the United States. The current studies suggest that these agents would increase the risk of arrhythmias.

In addition to demonstrating that a calcium-sensitizing drug could cause arrhythmias, Knollmann and colleagues showed that an agent that desensitizes the myofilaments - makes them less "willing" to bind calcium - prevented arrhythmias. The drug they used is limited to in vitro testing, but the studies validate the concept of calcium desensitization as a way to prevent or block arrhythmias.

"The next step is to look for agents that have a desensitizing effect and then try them therapeutically, first in our mouse models, and then potentially further along to patients," Knollmann said.

"We're excited about these studies because we believe that we have identified a novel mechanism that renders the heart susceptible to arrhythmias and a new therapeutic target for familial hypertrophic cardiomyopathy and other arrhythmia syndromes."

The first author of the current report, Franz Baudenbacher, Ph.D., assistant professor of Biomedical Engineering and Physics, played a key role in studying the electrical changes that caused the arrhythmias. Using optical imaging, he and colleagues in the Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE) measured how electrical excitation traveled across the hearts expressing troponin mutants or treated with calcium-sensitizing agents. These experiments defined the electrical underpinnings of the arrhythmias.

Source: Vanderbilt University

Explore further: Deep insight into the heart

Related Stories

Deep insight into the heart

December 8, 2017
By no means are only elderly people at risk from heart diseases. Physically active individuals can also be affected, for example if a seemingly harmless flu bug spreads to the heart muscle. Should this remain undetected and ...

Leaky calcium triggers brainstem blackout that results in sudden cardiac death

August 1, 2016
Epilepsy is an extremely common disorder affecting people of all ages, from infants through teenagers to older adults. One of the most mysterious things about this disorder is that about 6 percent of the people with epilepsy ...

Low serum calcium may increase risk of sudden cardiac arrest

October 5, 2017
Sudden cardiac arrest (SCA) is fatal for over 90% of patients, and more than half of men and close to 70% of women who die of SCA have no clinical history of heart disease prior to this cardiac event. It is one of the leading ...

Scientists solve sudden cardiac death mystery

August 1, 2014
(Medical Xpress)—Scientists have discovered the cause of sudden cardiac death in young children, for the first time making it possible to pinpoint a therapeutic target for future efforts in developing a cure.

Researchers solve puzzle of proteins linked to heart failure

February 22, 2012
Sudden cardiac death is a risk for patients with heart failure because the calcium inside their heart cells is not properly controlled and this can lead to an irregular heartbeat. New findings published in PLoS ONE, which ...

Timothy syndrome mutations provide new insights into the structure of L-calcium channel

July 14, 2011
The human genome encodes 243 voltage-gated ion channels. Mutations in calcium channels can cause severe inherited diseases such as migraine, night blindness, autism spectrum disorders and Timothy syndrome, which leads to ...

Recommended for you

Building better tiny kidneys to test drugs and help people avoid dialysis

February 16, 2018
A free online kidney atlas built by USC researchers empowers stem cell scientists everywhere to generate more human-like tiny kidneys for testing new drugs and creating renal replacement therapies.

Expanding Hepatitis C testing to all adults is cost-effective and improves outcomes

February 16, 2018
According to a new study, screening all adults for hepatitis C (HCV) is a cost-effective way to improve clinical outcomes of HCV and identify more infected people compared to current recommendations. Using a simulation model, ...

Study suggests expanded range for emerging tick-borne disease

February 16, 2018
Human cases of Borrelia miyamotoi, a tick-borne infection with some similarities to Lyme disease, were discovered in the eastern United States less than a decade ago. Now new research led by the Yale School of Public Health ...

Flu shot only 36 percent effective, making bad year worse (Update)

February 15, 2018
The flu vaccine is doing a poor job protecting older Americans and others against the bug that's causing most illnesses.

IFN-mediated immunity to influenza A virus infection influenced by RIPK3 protein

February 15, 2018
Each year, influenza kills half a million people globally with the elderly and very young most often the victims. In fact, the Centers for Disease Control and Prevention reported 37 children have died in the United States ...

A new class of drug to treat herpes simplex virus-1 infection

February 14, 2018
For patients with the herpes simplex-1 virus (HSV-1), there are just a handful of drugs available to treat the painful condition that can affect the eyes, mouth and genitals.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.