Researchers discover new genes that fuse in cancer

January 11, 2009

Using new technologies that make it easier to sequence the human genome, researchers at the University of Michigan Comprehensive Cancer Center have identified a series of genes that become fused when their chromosomes trade places with each other. These recurrent gene fusions are thought to be the driving mechanism that causes certain cancers to develop.

The gene fusions discovered could potentially serve as a marker one day for diagnosing cancer or as a target for future drug development.

In the new study, published in Nature, the researchers identified several gene fusions in prostate cancer cells. Some of the fusions were seen in multiple cell lines studied, while other gene fusions appeared only once. The fusions were found only in cancer cells, and not in normal cells.

"We defined a new class of mutations in prostate cancer. The recurrent fusions are thought to be the driving mechanism of cancer. But we found other fusions as well, some of which were unique to individual patients. Our next step is to understand if these play a role in driving disease," says Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology and S.P. Hicks Endowed Professor of Pathology at the U-M Medical School.

Chinnaiyan's team was the first to identify rearrangements in chromosomes and fused genes in prostate cancer. Gene fusions had previously been known to play a role in blood cell cancers such as leukemia and lymphoma, and in Ewing's sarcoma.

In the current study, the researchers showed that newer techniques could identify these gene fusions more quickly and easily.

The researchers used a technique called gene sequencing, which involves creating a library of all RNAs in a cell. Sequencing machines then run 24 hours a day for days at a time, reading the RNA. Once the sequencing is finished, researchers study the data searching for the gene fusions.

This is a more direct approach than the method Chinnaiyan's lab used to first identify gene fusions in prostate cancer, a process called microarray. Using microarray technology, researchers had to first know where they wanted to look. With gene sequencing, the researchers can find what's there without knowing where to look first.

"We now have the ability to use next generation sequencing technology. This will open up the field in cancer research," says Chinnaiyan, a Howard Hughes Medical Institute investigator. While the current study focused on prostate cancer, his team is also looking at gene fusions involved in breast cancer, lung cancer and melanoma.

Reference: Nature, published online Jan. 11, 2009, DOI: 10.1038/nature07638

Source: University of Michigan

Explore further: Researchers discover key signaling protein for muscle growth

Related Stories

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

Common genetic fusion event may be associated with low-risk prostate cancer

November 10, 2017
Establishing the way in which a genetic alteration called a TMPRSS2-ERG gene fusion forms in a prostate cancer, rather than the presence of the gene fusion itself, could help identify patients with prostate cancer with a ...

Two classes of GGAA-microsatellites in a Ewing sarcoma context

November 1, 2017
In a study published in PLOS ONE, researchers describe two types of GGAA-microsatellites and their roles in EWS/FLI binding and gene regulation in Ewing sarcoma. Ewing sarcoma is the second most common pediatric bone malignancy. ...

Study highlights new link between gene fusion and bladder and brain cancer

August 30, 2017
A study by the University of Warwick sheds new light on gene fusion in bladder and brain cancer.

New link seen between gene fusion and bladder cancer

September 18, 2017
(HealthDay)—The fibroblast growth factor receptor 3 (FGFR3) transforming acidic coiled-coil containing protein 3 (TACC3) (FT3) gene fusion recruits endogenous TACC3 away from the mitotic spindle, resulting in errors in ...

Discovery of a new fusion gene class may affect the development of cancer

October 5, 2017
A fusion gene occurs when a chromosomal break brings two separate genes together into a new functioning gene. So far, the research has focused on protein-coded fusion genes. However, human genes consist not only of protein-coded ...

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.