Novel prostate cancer vaccine taking aim at cancer cell 'sweet spot'

January 8, 2009

Molecules of sugar sitting on the surface of cancer cells are keys to the development of a new vaccine aimed at both treating and stopping the spread of certain types of cancers called carcinomas, which include prostate, breast, ovarian and lung, among others. Armed with a new two-year grant for $600,000 from the Gateway for Cancer Research, an Illinois-based philanthropic foundation, immunologist Alessandra Franco, M.D., Ph.D., and her co-workers at the Moores Cancer Center at the University of California, San Diego are hoping to develop a low-cost immunotherapy for prostate carcinoma that may also have use against a variety of other carcinomas as well.

Franco, adjunct assistant professor of pediatrics at the UC San Diego School of Medicine, and her co-workers have spent the last decade proving that the immune system's destructive, or "killer," T-cells can recognize sugars on tumor cell surfaces. Her laboratory pioneered and developed the notion that conventional T-cells recognize not only peptides, or pieces of proteins, but also sugars, specifically small carbohydrates called tumor-associated carbohydrate antigens (TACA) expressed on carcinoma cell surfaces. Ideally, this recognition enables the T-cell to attach to and kill the cancer cell.

The researchers have designed "glycopeptides," compounds in which sugars are linked to peptides that are recognized by T-cells. When given as part of a vaccine therapy, these glycopeptides rouse immune system T-cells into recognizing TACA on tumor cell surfaces, attacking and killing the cancer cells. Her research team has already shown that both normal mice and mice with tumors that were vaccinated could successfully generate carbohydrate-specific T-cells that could kill tumors expressing the same carbohydrate molecule.

Cancer vaccines have had a mixed record of success at best. Most immunotherapies have focused on revving up immune system antibodies to recognize proteins on tumor cells.

"A limitation with current immunotherapies is that every tumor expresses different protein antigens, which all need to be characterized," she explained. "It is difficult for the immune system to discriminate, to tell that cancer cells are 'non-self' and should be destroyed. What's nice about T-cells recognizing sugars and why it's so important in cancer is because the same molecules are uniquely expressed in a large variety of cancers." A cell that becomes cancerous begins making a variety of sugar molecules that are not expressed in normal adult cells, making this strategy potentially useful for wide-ranging treatments of different tumors. Her team is targeting a sugar that is expressed on all carcinomas, a type of cancer that begins in epithelial cells.

Studies in the first year of the grant are focusing on gathering further laboratory and preclinical data to show the vaccine's effectiveness. Franco is hoping to begin a clinical trial in the second year of the grant to test the vaccine on prostate cancer patients who have already had treatment but who are at extremely high risk for relapse. She sees the vaccine as being used to help prevent the spread of cancer (metastatic disease), and perhaps even in preventing cancer in healthy people.

"The beauty of this approach is that the same vaccine may prevent metastasis," she said, noting that tumor cells can use sugar or carbohydrate antigens to spread. "If ultimately proven successful, this could be used in a first attempt to try to address vaccination on a large scale to prevent cancer."

The same type of vaccine can potentially be used for breast, lung, liver, ovary and other carcinomas, Franco said. "If we can show that this system works in humans, we think that it can address a variety of tumors with the same sugar compounds." The vaccine's relatively simple formulation, stability and low production cost could make it ideal for use in developing countries, she added.

Source: University of California - San Diego

Explore further: Unique approach to treatment of rare and aggressive blood cancers

Related Stories

Unique approach to treatment of rare and aggressive blood cancers

November 14, 2017
A unique approach to targeting the abnormal T-cells that cause T-cell lymphomas could offer hope to patients with the aggressive and difficult-to-treat family of cancers, finds a study involving researchers from Cardiff University.

Colorectal cancers may mutate to escape immune system detection in many ways

October 30, 2017
Whole exome sequencing revealed that colorectal cancers with high mutational load (MSI-H) predominantly use "immunoediting" to escape immune surveillance while colorectal cancers with low mutational load (MSS) use oncogenic ...

Genetic alteration allowing lung cancers to escape the immune system may occur late in tumor evolution

October 27, 2017
A specific genetic alteration that could allow cancer cells to escape the immune system was detected in 40 percent of non–small cell lung cancers (NSCLCs) analyzed, according to data presented at the AACR-NCI-EORTC International ...

APC protein affects colon cancer immunity by preventing pre-cancerous inflammation

October 25, 2017
Adenomatous polyposis coli (APC) is a gene whose mutations are associated with a rare, hereditary form of colorectal cancer known as familial adenomatous polyposis. Research led by scientists at the Institut Pasteur and Inserm ...

Scientists discover surprising immune cell activity that may be limiting immunotherapy

October 30, 2017
Researchers have uncovered a surprising process within a key immune cell that may help explain the limitations of immunotherapy as a cancer treatment.

Activation of immune T cells leads to behavioral changes

October 23, 2017
Scientists from the RIKEN Center for Integrative Medical Sciences in Japan and collaborators have found that T cells—immune cells that help to protect the body from infections and cancer—change the body's metabolism when ...

Recommended for you

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Lung cancer triggers pulmonary hypertension

November 17, 2017
Shortness of breath and respiratory distress often increase the suffering of advanced-stage lung cancer patients. These symptoms can be triggered by pulmonary hypertension, as scientists at the Max Planck Institute for Heart ...

Researchers discover an Achilles heel in a lethal leukemia

November 16, 2017
Researchers have discovered how a linkage between two proteins in acute myeloid leukemia enables cancer cells to resist chemotherapy and showed that disrupting the linkage could render the cells vulnerable to treatment. St. ...

Computer program finds new uses for old drugs

November 16, 2017
Researchers at the Case Comprehensive Cancer Center at Case Western Reserve University School of Medicine have developed a computer program to find new indications for old drugs. The computer program, called DrugPredict, ...

Pharmacoscopy improves therapy for relapsed blood cancer in a first clinical trial

November 16, 2017
Researchers at CeMM and the Medical University of Vienna presented a preliminary report in The Lancet Hematology on the clinical impact of an integrated ex vivo approach called pharmacoscopy. The procedures measure single-cell ...

Wider sampling of tumor tissues may guide drug choice, improve outcomes

November 15, 2017
A new study focused on describing genetic variations within a primary tumor, differences between the primary and a metastatic branch of that tumor, and additional diversity found in tumor DNA in the blood stream could help ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Jan 09, 2009
Fine, but you are still trying to KILL it - not CURE it! If you drain off the ENERGY SURPLUS the cell can live out its normal life, mitosing at a normal rate. How do you DO this? Just COOL it! That is what angiogenesis is trying to do!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.