Skin color studies on tadpoles lead to cancer advance

January 29, 2009

The humble tadpole could provide the key to developing effective anti-skin cancer drugs, thanks to a groundbreaking discovery by researchers at the University of East Anglia (UEA).

The scientists have identified a compound which, when introduced into Xenopus Laevis tadpoles, blocks the movement of the pigment cells that give the tadpoles their distinctive markings and which develop into the familiar greenish-brown of the adult frog.

It is the uncontrolled movement and growth of pigment cells (melanophore) in both tadpoles and humans that causes a particularly dangerous form of skin cancer. By blocking the migration of these cells, the development and spread of cancerous tumours can potentially be prevented.

Published today in the Cell Press journal 'Chemistry & Biology', the findings are the culmination of several years' work by the UEA team. This unconventional study, which was initiated with funding from the UK Medical Research Council, identifies for the first time an effective new man-made MMP (metalloproteinase) inhibitor, known as 'NSC 84093'.

The work was led by the University of East Anglia, in partnership with the John Innes Centre (JIC) and Pfizer.

"This is an exciting advance with implications in the fight against cancer," said lead author Dr Grant Wheeler of UEA's School of Biological Sciences.

"The next step is to test the compound in other species and, in the longer term, embark on the development of new drugs to fight skin cancer in humans."

The species Xenopus Laevis (South African clawed frog) is more closely related to humans than one might expect. It only diverged from man 360 million years ago and has the same organs, molecules and physiology. This means that the same mechanisms are involved in causing cancer in both Xenopus tadpoles and humans.

Until the 1960s, Xenopus Laevis frogs were used as the main human pregnancy test. A woman's urine sample was injected into a live frog. If the urine contained the hCG (human chrionic gonadotropin) hormone, the frog would lay eggs within 24 hours, indicating that the woman was pregnant.

Source: University of East Anglia

Explore further: Artificial intelligence uncovers new insight into biophysics of cancer

Related Stories

Artificial intelligence uncovers new insight into biophysics of cancer

January 27, 2017
Scientists from Tufts University's School of Arts and Sciences, the Allen Discovery Center at Tufts, and the University of Maryland, Baltimore County have used artificial intelligence to gain insight into the biophysics of ...

The tadpole endoscope—new diagnostic device in the fight against cancer

September 16, 2015
Engineers have developed a new medical device aimed at improving diagnostic procedures for various cancers: the tadpole endoscope (TE).

Cancer, bioelectrical signals and the microbiome connected

May 27, 2014
Developmental biologists at Tufts University, using a tadpole model, have shown that bioelectrical signals from distant cells control the incidence of tumors arising from cancer-causing genes and that this process is impacted ...

The secrets of a tadpole's tail and the implications for human healing

January 13, 2013
Scientists at The University of Manchester have made a surprising finding after studying how tadpoles re-grow their tails which could have big implications for research into human healing and regeneration.

Nobel prize to Briton, Japanese for stem cell work (Update 4)

October 8, 2012
Two scientists from different generations won the Nobel Prize in medicine Monday for the groundbreaking discovery that cells in the body can be reprogrammed into completely different kinds, work that reflects the mechanism ...

Artificial intelligence uncovers clues to why embryos develop abnormally

October 6, 2015
Uncle Joe smokes a pack a day, drinks like a fish and lives to a ripe old age. His brother, leading a similar lifestyle, succumbs to cancer at age 55. Why do some individuals develop certain diseases or disorders while others ...

Recommended for you

Lung cancer triggers pulmonary hypertension

November 17, 2017
Shortness of breath and respiratory distress often increase the suffering of advanced-stage lung cancer patients. These symptoms can be triggered by pulmonary hypertension, as scientists at the Max Planck Institute for Heart ...

Researchers discover an Achilles heel in a lethal leukemia

November 16, 2017
Researchers have discovered how a linkage between two proteins in acute myeloid leukemia enables cancer cells to resist chemotherapy and showed that disrupting the linkage could render the cells vulnerable to treatment. St. ...

Computer program finds new uses for old drugs

November 16, 2017
Researchers at the Case Comprehensive Cancer Center at Case Western Reserve University School of Medicine have developed a computer program to find new indications for old drugs. The computer program, called DrugPredict, ...

Pharmacoscopy improves therapy for relapsed blood cancer in a first clinical trial

November 16, 2017
Researchers at CeMM and the Medical University of Vienna presented a preliminary report in The Lancet Hematology on the clinical impact of an integrated ex vivo approach called pharmacoscopy. The procedures measure single-cell ...

Wider sampling of tumor tissues may guide drug choice, improve outcomes

November 15, 2017
A new study focused on describing genetic variations within a primary tumor, differences between the primary and a metastatic branch of that tumor, and additional diversity found in tumor DNA in the blood stream could help ...

A new strategy for prevention of liver cancer development

November 14, 2017
Primary liver cancer is now the second leading cause of cancer-related death worldwide, and its incidences and mortality are increasing rapidly in the United Stated. In late stages of the malignancy, there are no effective ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.