The improvising brain: Getting to the neural roots of the musical riff

February 6, 2009 By Lesley Bannatyne
Aaron Berkowitz at the keyboard.

(PhysOrg.com) -- What’s involved when a musician sits down at the piano and plays flurries of notes in a free fall, without a score, without knowing much about what will happen moment to moment? Is it possible to find the sources of a creative process? Is it possible to determine how improvisation occurs?

Aaron Berkowitz, a Harvard graduate student in ethnomusicology, and Daniel Ansari, a psychology professor at the University of Western Ontario, recently collaborated on an experiment designed to study brain activity during musical improvisation in order to get closer to answering these questions. The Harvard Mind/Brain/Behavior Initiative awarded the collaborators a grant to look at musical improvisation in trained musicians, utilizing brain scans done with functional magnetic resonance imaging (fMRI) technology. A resulting paper, “Generation of Novel Motor Sequences: The Neural Correlates of Musical Improvisation,” was published in the journal NeuroImage, and received the journal’s 2008 Editor’s Choice Award in Systems Neuroscience.

“There are essentially two basic questions in music cognition,” says Berkowitz. “First, how does the brain ‘do’ music? That is, what parts of the brain are involved, and how do they interact, when people listen to or perform music? Second, what can studying music tell us about the brain? When music is heard or played, the brain calls on many more general cognitive processes, for example, perceiving patterns in sounds or converting visual information [in a musical score] to auditory or motor information.”

The perception and performance of music have been studied by scientists; most famously, looking at what listening to classical music — like Mozart — can do to the developing brain. But looking at brain activity during the process of music improvisation is new.

Improvisation is not exclusive to music, says Berkowitz. Nor is it a pure flight of invention. “It’s spontaneity within a set of constraints,” Berkowitz explains. “Imagine: You slip on ice, and you do a sort of little dance to regain your balance — maybe in a way you’ve never ‘danced’ before; but though the sequence of movements might be novel, it’s made up of the individual movements that are possible given what the body can do and where it is in space.” Musical improvisers also work within constraints. “Those bebop players play what sounds like 70 notes within a few seconds. There’s no time to think of each individual note. They have some patterns in their toolbox,” says Berkowitz.

Berkowitz and Ansari were interested in the brain regions that underlie improvisation. The team used 12 classically trained pianists in their 20s with an average of around 13 years of piano training as subjects for the study.

Since the brain is active, even at rest, Berkowitz and Ansari first needed to design a way to subtract out brain activity common to hearing or producing music so they could isolate the neural substrates of the spontaneous creative aspect of improvisation. “If you were to put someone in an fMRI scanner and have them improvise, nearly the whole brain would likely be involved. We needed a way of isolating what is unique to improvising, namely, spontaneous novel action sequences.”

To meet that need, Ansari and Berkowitz designed a series of four activities. In the two general types of tasks, they had subjects either improvise melodies or play pre-learned patterns. Comparing brain activity in these two situations allowed Berkowitz and Ansari to focus on melodic improvisation. Subjects did each of these two general tasks either with or without a metronome. When there was no metronome marking time, subjects improvised their own rhythms. Comparing conditions with and without metronome allowed Berkowitz and Ansari to look at rhythmic improvisation. A key point is that when the subjects played patterns (instead of improvised melodies), they could choose to play them in any order. "The idea," says Berkowitz, "was that there would still be some spontaneity in decision making here, but the choices would be more limited than when they were improvising."

“We were trying to isolate creativity — or novelty,” explains Berkowitz. “It’s not that we expected to uncover some region of the brain nobody had ever noticed before and call it ‘the improvisation area.’ We wanted to see which brain areas were involved in improvisation. This tells us something about what these regions might be doing in improvisation, and it could even shed new light on these areas, since we would be showing that they are involved in improvisation.”

Ansari and Berkowitz discovered an overlap between melodic improvisation and rhythmic improvisation in three areas of the brain: the dorsal premotor cortex (dPMC), the anterior cingulate (ACC), and the inferior frontal gyrus/ventral premotor cortex (IFG/vPMC).

“The dPMC takes information about where the body is in space, makes a motor plan, and sends it to the motor cortex to execute the plan. The fact [that] it’s involved in improvisation is not surprising, since it is a motor activity. The ACC is a part of the brain that appears to be involved in conflict monitoring — when you’re trying to sort out two conflicting possibilities, like when you to read the word BLUE when it’s printed in the color red. It’s involved with decisionmaking, which also makes sense — improvisation is decision making, deciding what to play and how to play it.” The IFG/vPMC is perhaps one of the most interesting findings of their study. “This area is known to be involved when people speak and understand language. It’s also active when people hear and understand music. What we’ve shown is that it’s involved when people create music.”

Improvising, from a neurobiological perspective, involves generating, selecting, and executing musical-motor sequences, something that wouldn’t surprise musicians. But in terms of brain research, it’s a new piece of information. And each new study contributes to understanding different regions of the brain and the networks they make up, ultimately moving our understanding that much further.

Provided by Harvard University

Explore further: How a seahorse-shaped brain structure may help us recognize others

Related Stories

How a seahorse-shaped brain structure may help us recognize others

December 8, 2017
How do we recognize others? How do we know friend from foe, threat from reward? How does the brain compute the multitude of cues telling us that Susan is not Erica even though they look alike? The complexity of social interactions—human ...

Brazilian mediums shed light on brain activity during a trance state

November 16, 2012
Researchers at Thomas Jefferson University and the University of Sao Paulo in Brazil analyzed the cerebral blood flow (CBF) of Brazilian mediums during the practice of psychography, described as a form of writing whereby ...

The workings of human interaction and improvisation

December 29, 2015
With the support of the Austrian Science Fund FWF, Michael Kimmel from the University of Vienna investigates the workings of human interaction and improvisation. The cognitive scientist is trying to find out more about the ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015
Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

Researchers tie unexpected brain structures to creativity—and to stifling it

May 28, 2015
Investigators at Stanford University have found a surprising link between creative problem-solving and heightened activity in the cerebellum, a structure located in the back of the brain and more typically thought of as the ...

Scientists detect brain network that gives humans superior reasoning skills

December 3, 2014
When it comes to getting out of a tricky situation, we humans have an evolutionary edge over other primates. Take, as a dramatic example, the Apollo 13 voyage in which engineers, against all odds, improvised a chemical filter ...

Recommended for you

Tracking effects of a food preservative on the gut microbiome

December 18, 2017
Antimicrobial compounds added to preserve food during storage are believed to be benign and non-toxic to the consumer, but there is "a critical scientific gap in understanding the potential interactions" they may have with ...

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.