Decoding short-term memory with fMRI

February 21, 2009,
University of Oregon doctoral student Edward Ester points to computer screen where activity in the brain's visual cortex is displayed. Photo by Jim Barlow

People voluntarily pick what information they store in short-term memory. Now, using functional magnetic resonance imaging (fMRI), researchers can see just what information people are holding in memory based only on patterns of activity in the brain.

Psychologists from the University of Oregon and the University of California, San Diego, reported their findings in the February issue of Psychological Science. By analyzing blood-flow activity, they were able to identify the specific color or orientation of an object that was intentionally stored by the observer.

The experiments, in which subjects viewed a stimulus for one second and held a specific aspect of the object in mind after the stimulus disappeared, were conducted in the UO's Robert and Beverly Lewis Center for Neuroimaging. In 10-second delays after each exposure, researchers recorded brain activity during memory selection and storage processing in the visual cortex, a brain region that they hypothesized would support the maintenance of visual details in short-term memory.

"Another interesting thing was that if subjects were remembering orientation, then that pattern of activity during the delay period had no information about color, even though they were staring at a colored-oriented stimulus," said Edward Awh, a UO professor of psychology. "Likewise, if they chose to remember color we were able to decode which color they remembered, but orientation information was completely missing."

Researchers used machine-learning algorithms to examine spatial patterns of activation in the early visual cortex that are associated with remembering different stimuli, said John T. Serences, professor of psychology at UC-San Diego. "This algorithm," he said, "can then be used to predict exactly what someone is remembering based on these activation patterns."

Increases in blood flow, as seen with fMRI, are measured in voxels -- small units displayed in a 3-D grid. Different vectors of the grid, corresponding to neurons, respond as subjects view and store their chosen memories. Based on patterns of activity in an individual's visual cortex, located at the rear of the brain, researchers can pinpoint what is being stored and where, Awh said.

The study is similar to one published this month in Nature and led by Vanderbilt University neuroscientist Frank Tong and colleagues, who were able to predict with 80-percent-plus accuracy which patterns individuals held in memory 11 seconds after seeing a stimulus.

"Their paper makes a very similar point to ours," Awh said, "though they did not vary which 'dimension' of the stimulus people chose to remember, and they did not compare the pattern of activity during sensory processing and during memory. They showed that they could look at brain activity to classify which orientation was being stored in memory."

What Awh and colleagues found was that the sensory area of the brain had a pattern of activity that represented only an individual's intentionally stored aspect of the stimulus. This voluntary control in memory selection, Awh said, falls in line with previous research, including that done by Awh and co-author Edward K. Vogel, also of the UO, that there is limited capacity for what can be stored at one time. People choose what is important and relevant to them, Awh said.

"Basically, our study shows that information about the precise feature a person is remembering is represented in the visual cortex," Serences said, "This is important because it demonstrates that people recruit the same neural machinery during memory as they do when they see a stimulus."

That demonstration, Awh said, supports the sensory recruitment hypothesis, which suggests the same parts of the brain are involved in perception of a stimulus and memory storage.

A fourth co-author with Awh, Serences and Vogel was Edward F. Ester, a UO doctoral student. Serences was with the University of California, Irvine, when the project began. The research was primarily funded by a grant from the National Institutes of Health to Awh, and by support from the UO's Robert and Beverly Lewis Center for Neuroimaging.

Source: University of Oregon

Explore further: Recording a thought's fleeting trip through the brain

Related Stories

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Researchers find where visual memories are made

January 21, 2015
In findings that may lead to new treatments for cognitive disorders, researchers at MIT's Picower Institute for Learning and Memory zero in on how the brain forms memories of what has been seen.

How attention helps you remember

September 27, 2012
A new study from MIT neuroscientists sheds light on a neural circuit that makes us likelier to remember what we're seeing when our brains are in a more attentive state.

Visual working memory not as specialized in the brain as visual encoding, study finds

February 6, 2012
Researchers have long known that specific parts of the brain activate when people view particular images. For example, a region called the fusiform face area turns on when the eyes glance at faces, and another region called ...

Categories rule: High-order brain centers pave the way for visual recognition

July 11, 2011
(Medical Xpress) -- The real world is, in a word, cluttered – but thanks to evolution, we (and other mammals) have no trouble detecting objects in visually complex natural environments. Determining precisely how this ...

Memories may skew visual perception

July 20, 2011
Taking a trip down memory lane while you are driving could land you in a roadside ditch, new research indicates. Vanderbilt University psychologists have found that our visual perception can be contaminated by memories of ...

Recommended for you

Study of learning and memory problems in OCD helps young people unlock potential at school

January 22, 2018
Adolescents with obsessive-compulsive disorder (OCD) have widespread learning and memory problems, according to research published today. The findings have already been used to assist adolescents with OCD obtain the help ...

Intensive behavior therapy no better than conventional support in treating teenagers with antisocial behavior

January 19, 2018
Research led by UCL has found that intensive and costly multisystemic therapy is no better than conventional therapy in treating teenagers with moderate to severe antisocial behaviour.

Babies' babbling betters brains, language

January 18, 2018
Babies are adept at getting what they need - including an education. New research shows that babies organize mothers' verbal responses, which promotes more effective language instruction, and infant babbling is the key.

College branding makes beer more salient to underage students

January 18, 2018
In recent years, major beer companies have tried to capitalize on the salience of students' university affiliations, unveiling marketing campaigns and products—such as "fan cans," store displays, and billboard ads—that ...

Inherited IQ can increase in early childhood

January 18, 2018
When it comes to intelligence, environment and education matter – more than we think.

Modulating molecules: Study shows oxytocin helps the brain to modulate social signals

January 17, 2018
Between sights, sounds, smells and other senses, the brain is flooded with stimuli on a moment-to-moment basis. How can it sort through the flood of information to decide what is important and what can be relegated to the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.