Study hints at new approaches to prevent transplant rejection

February 11, 2009,

To prevent the rejection of newly transplanted organs and cells, patients must take medicines that weaken their entire immune systems. Such potentially life-saving treatments can, paradoxically, leave those receiving them susceptible to life-threatening infections.

Now researchers at the University of North Carolina at Chapel Hill School of Medicine and the UNC Lineberger Comprehensive Cancer Center have discovered what seems to trigger the immune system to attack transplanted cells in the first place.

The finding could help chart a course to completely new therapies that may prevent graft-versus-host disease - the main cause of transplant failure - and its sometimes fatal complications.

The UNC study has identified a subset of cells - named TH17 cells - that can bring about the condition. Until now, without a clear understanding of the disease, clinicians have had little choice but to treat transplant patients with toxic regimens of steroids and immunosuppressive drugs.

"Our hope is that uncovering the mechanisms that cause graft-versus-host disease will allow for treatments that specifically target its causes and do not have the harmful side effects of traditional immunosuppressive therapy," said study lead author Jonathan S. Serody, M.D., a member of the Lineberger Center and the Elizabeth Thomas Professor of Medicine, Microbiology and Immunology at UNC. The results of the study appeared in the Feb. 5, 2009, issue of Blood, the journal of the American Society of Hematology.

Graft-versus-host disease (GVHD) is a serious complication of transplants that occurs when the donor's marrow (graft) produces immune cells that attack multiple organs of the recipient (host), typically the skin, gastrointestinal tract and liver.

Until recently, scientists believed that most of the disease's problems came from the production of specific molecules called interferons, a class of proteins that arise in response to foreign agents like viruses and parasites.

However, when several researchers tried testing whether or not blocking the action of these proteins would diminish graft-versus-host, they found that getting rid of interferons actually made the disease worse. When Serody and his colleagues tried this experiment themselves, they found that blocking the action of interferons resulted in a huge increase in the number of a specific group of white blood cells, or T lymphocytes, called TH17 cells.

To determine if these cells were actually aggravating the disease, the UNC researchers first cultured, expanded and purified cells of the TH17 lineage. In a technique pioneered by Michael J. Carlson, Ph.D., a postdoctoral fellow in Serody's laboratory, immature lymphocytes were incubated in petri dishes with a cocktail of proteins that "programmed" virtually all of them to become TH17 cells.

When the researchers transplanted the purified cells into mice, they found that the cells did in fact cause graft-versus-host disease, with the most severe damage to the lung and skin. Not only did these findings implicate TH17 cells in the disease, but they also generated one of the first mouse models to display acute GVHD skin changes - consistent with the most common manifestations of the disease in humans.

Having identified the role TH17 cells play in the disease, Serody and his colleagues then wanted to know what substances the cells were producing to cause it. They knew that TH17 cells produce a number of specialized proteins - called inflammatory cytokines - that are involved in communication between cells during the immune response. So they methodically blocked the action of each of these cytokines to determine which ones were actually causing the damage to various organs of the transplanted mice they were studying.

They found that the skin damage appeared to stem from the production of IL17 and its sister cytokines, while destruction in other tissues came from a protein called TNF-alpha. Interestingly, these findings lend support to the strategy employed by some clinicians to treat the manifestations of the disease with drugs that block TNF-alpha.

"For our findings to ever make an impact clinically, we would have to confirm that there are two main branches leading to the disease," said Serody. "Then we would need to take an approach that neutralizes both - simultaneously blocking the original suspect, interferon gamma, and our newest culprit, cytokines made by TH17 cells, to treat GVHD."

Research on that TH17 branch has already sparked the interest of some pharmaceutical companies such as Wyeth, and Serody predicts that there will be a number of drugs coming out in the next five years to treat immune-based skin diseases.

Source: University of North Carolina School of Medicine

Explore further: Scientists find microbes on the skin of mice promote tissue healing, immunity

Related Stories

Scientists find microbes on the skin of mice promote tissue healing, immunity

January 18, 2018
Beneficial bacteria on the skin of lab mice work with the animals' immune systems to defend against disease-causing microbes and accelerate wound healing, according to new research from scientists at the National Institute ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Researchers discover key driver of atopic dermatitis

January 17, 2018
Severe eczema, also known as atopic dermatitis, is a chronic inflammatory skin condition that is driven by an allergic reaction. In their latest study, researchers at La Jolla Institute reveal an important player that promotes ...

New robot can help treat rare birth defect

January 18, 2018
Researchers at the University of Sheffield and Boston's Children Hospital, Harvard Medical School have created a robot that can be implanted into the body to aid the treatment of oesophageal atresia, a rare birth defect that ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

Genomics reveals key macrophages' involvement in systemic sclerosis

January 18, 2018
A new international study has made an important discovery about the key role of macrophages, a type of immune cell, in systemic sclerosis (SSc), a chronic autoimmune disease which currently has no cure.

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.