Lack of specific gene plays role in autism

February 9, 2009,

It is estimated that three to six out of every 1,000 children in the United States have autism - and the number of diagnosed cases is rising. Autism is one of a group of series developmental problems called autism spectrum disorders (ASD) that appear in early childhood, usually before age 3. Through symptoms and severity vary, all autism disorders affect a child's ability to communicate and interact with others.

It's not clear whether this is due to better detection and reporting of autism, a real increase in the number of cases, or both.

That's why researchers at Case Western Reserve University, led by Gary Landreth, a professor of neurosciences and neurology at the School of Medicine, have pulled together a number of recent findings that link a common genetic pathway with a number of human syndromes and a newly-recognized genetic form of autism, publishing them in the January 29, 2009, issue of the prestigious journal Neuron.

Landreth, whose research team is made up of partners from the Cole Eye Institute at the Cleveland Clinic, the Louis Stokes Cleveland VA Medical Center and the University of Pennsylvania, says his lab in particular has been researching the class of enzymes called ERKs (extracellular signal regulated kinase), which are the central elements of a major intracellular signal transduction pathway. His research team has found that in animal models the ERKs - known as ERK 1 and ERK 2 - are required for normal brain, heart and facial development.

This common genetic pathway that acts to regulate the ERK signaling cascade is particularly important in brain development, learning, memory and cognition. It has been recently reported that mutation or deletion of elements within this signaling pathway leads to developmental syndromes in humans that are associated with impaired cognitive function and autism.

According to Landreth, these syndromes, called neuro-craniofacial-cardiac syndromes (NCFCs), encompass a group of syndromes also typified by cardiac, craniofacial and neurological defects. Current research has found that they arise from mutations in the intracellular signaling pathway that regulates ERKs.

"Very recently it was discovered that 1 percent of autistic children have either a loss or duplication in a region of Chromosome 16 that encompasses the gene for ERK 1," said Landreth, who also serves as director of the School of Medicine's Alzheimer's Research Laboratory. "What no one else realized is that the autistic children also have craniofacial and cardiac defects just like those children with NCFC syndromes."

Thus, Landreth says, mutations within the ERK signaling pathway appears to be a common cause for NCFC syndromes and those children with autism due to genetic changes in chromosome 16.

"Unexplained is why loss of ERK 1 is associated with autism and other ERK pathway mutations cause mental retardation and similar diseases," he said. "Our contribution to the autism story is that we recognized it was just like the NCFC syndromes and we are hypothesizing that they all arise from defects within a single genetic pathway."

Source: Case Western Reserve University

Explore further: Lab-grown human cerebellar cells yield clues to autism

Related Stories

Lab-grown human cerebellar cells yield clues to autism

February 16, 2018
Increasing evidence has linked autism spectrum disorder (ASD) with dysfunction of the brain's cerebellum, but the details have been unclear. In a new study, researchers at Boston Children's Hospital used stem cell technology ...

Old drug may have new tricks for fighting cancer

February 5, 2018
In recent years, a powerful suite of drugs known as kinase inhibitors have been developed to treat cancer and other diseases. Primary targets of such drugs include a family of receptor tyrosine kinases (RTKs) which protrude ...

New genetic models of autism point to cellular roots of disease

December 6, 2017
Researchers at UC San Francisco have developed a new genetic model of autism, using neurons created in the lab from patients' own skin cells. Their experiments suggest that abnormalities in the electrical firing of neurons ...

Researchers launch atlas of developing human brain

December 7, 2017
The human brain has been called the most complex object in the cosmos, with 86 billion intricately interconnected neurons and an equivalent number of supportive glial cells. One of science's greatest mysteries is how an organ ...

How a seahorse-shaped brain structure may help us recognize others

December 8, 2017
How do we recognize others? How do we know friend from foe, threat from reward? How does the brain compute the multitude of cues telling us that Susan is not Erica even though they look alike? The complexity of social interactions—human ...

Newly revealed autism-related genes include genes involved in cancer

September 25, 2017
The identification of genes related to autism spectrum disorder (ASD) could help to better understand the disorder and develop new treatments. While scientists have found many genetic differences in different people with ...

Recommended for you

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.