Molecules help the immune system to detect cells infected with West Nile virus

February 5, 2009

New research reveals a model of host-pathogen interaction that explains how the immune system finds and destroys cells infected with a potentially lethal brain virus. The study, published online on February 5th in Immunity, a Cell Press publication, may lead to new treatments for West Nile virus (WNV) and other similar viral infections.

WNV is a single-stranded (ss)RNA virus that is the most common cause of viral inflammation of the brain (encephalitis) in North America, and it has emerged as a significant worldwide public health concern. Infection with the virus, which is spread by mosquitoes, is often asymptomatic but can lead to a potentially fatal inflammation of the brain. "An approved therapy for use in humans does not currently exist, and viral pathogenesis is incompletely understood," says senior study author Dr. Richard A. Flavell from the Yale University School of Medicine.

Dr. Flavell and colleagues had previously shown that Toll-like receptor 7 (TLR7), a molecule known to play an important role in innate immunity (the body's first line of defense against infection), is involved in helping the immune system to recognize ssRNA viruses. His team sought to demonstrate a functional role for TLR7 in the control of WNV infection.

The researchers examined WNV infection in mice lacking either TLR7 or MyD88, an adaptor molecule used by TLR7 for detecting infection with a ssRNA virus. Mice lacking TLR7 or MyD88 exhibited increased susceptibility to lethal WNV encephalitis. The mice had increased levels of WNV and, unexpectedly, increased levels of most of the innate immune system chemicals that are thought to be critical for host anti-viral immunity.

In contrast, mice lacking TLR7 or MyD88 had reduced levels of other key chemicals, including interleukin-23 (IL-23). Additional studies revealed that macrophages, immune cells that ingest and kill virus-infected cells, failed to home to WNV-infected cells in mice lacking TLR7. This suggests that TLR7 and IL-23-dependent WNV responses play a critical role in the ability of the host innate immune system to locate infected cells.

" Taken together, our results show that TLR7 is a critical host sensor of WNV required for IL-23-dependent immune cell homing to infected target cells, and they suggest that pharmacotherapy aimed at promoting TLR7/IL-23 signaling will be beneficial for treatment of WNV and perhaps other viruses that cause encephalitis," concludes Dr. Flavell.

Source: Cell Press

Explore further: The role of monosodium urate crystals in gout

Related Stories

The role of monosodium urate crystals in gout

September 20, 2017
An attack of gout is said to be like your joint catching fire, and someone slamming it with a hammer to put out the flames. Now A*STAR researchers have identified how the build-up of monosodium urate (MSU) crystals in the ...

Immune and nerve cells work together to fight gut infections

September 7, 2017
Nerve cells in the gut play a crucial role in the body's ability to marshal an immune response to infection, according to a new study from Weill Cornell Medicine scientists.

Allergies? Exhausted regulatory T cells may play a role

August 24, 2017
Researchers have evidence that the specialized T cells responsible for maintaining a balanced immune response are vulnerable to exhaustion that disrupts normal functioning and may even contribute to allergic reactions. St. ...

New receptor found on scavenger cells

August 24, 2017
Adenoviral infections have a mild disease progression in healthy people, but it can be dangerous for immunocompromised people. If a patient is infected with the virus and gets a bacterial infection on top of it, it can lead ...

Researchers identify critical molecular link between inflammation and diabetes

September 12, 2017
A new study by researchers at the University of Maryland School of Medicine (UM SOM) has uncovered how inflammation contributes to a key feature of diabetes, the body's inability to metabolize glucose, a condition known as ...

Gut microbes may influence multiple sclerosis progression

September 11, 2017
Researchers at UC San Francisco have identified specific gut microbes associated with multiple sclerosis (MS) in human patients, showing that these microbes take part in regulating immune responses in mouse models of the ...

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.