Preventing prostate cancer the complex way

February 3, 2009 Lauren Bertin
The image on the left shows a sample from a normal prostate, with organized cells lining the O-shaped ductules. Mice without the PTEN gene had developed cancer, which is characterized by enlarged glands and disorganized cells clogging the ductules (middle image). When mTORC2 activity is blocked in mice lacking the PTEN gene, the prostate ductules resemble the appearance of normal prostate samples, with organized cells along the ductules (right image). Image courtesy / Sabatini and Cell Press (Feb. 3, 2009)

(PhysOrg.com) -- Blocking a specific protein complex prevents the formation of tumors in mice genetically predisposed to develop prostate cancer, researchers at the Whitehead Institute for Biomedical Research have found. Interestingly, inhibiting this protein complex in non-cancer cells appears to have no impact, suggesting that the protein complex may represent a promising target for drug development.

Prostate cancer, the second-most common cancer among men in the United States, can be caused by mutation of a known tumor suppressor gene that restrains abnormal cell growth. Studies have shown that an estimated 70 percent of men with prostate cancer have a deletion of this gene, known as PTEN.

"PTEN is probably the second-most common tumor suppressor loss that causes cancer -- after p53 -- so it's a 'big deal' tumor suppressor," says Whitehead Member David Sabatini.

In prostate cells where PTEN is absent, no mechanism exists to prevent the cells from dividing and growing uncontrollably. In a new study appearing in the Feb. 3 edition of Cancer Cell, researchers in Sabatini's lab found that prostate cells also require the mTORC2 protein complex to form tumors.

In a mouse model of human prostate cancer, the PTEN gene is deleted, causing prostate tumors to form. By switching off a protein known as RICTOR, one of the proteins comprising the mTORC2 protein complex, Whitehead researchers found that tumor formation could be blocked and prostate cancer development inhibited in study mice -- despite the PTEN deletion.

To test how a RICTOR-blocking drug might affect healthy cells, Sabatini's lab worked with normal cells where RICTOR was inhibited and found that regular cellular activity is unaffected. This suggests that RICTOR inhibition may offer a novel therapeutic target.

According to David Guertin, a postdoctoral researcher in Sabatini's lab and lead author of this paper, "if you want to make a drug, this protein complex is an appealing target because that drug may not have a big impact on normal cells, but it will have a detrimental effect on cancer cells. It's really a major finding."

Finding a protein that's an acceptable target poses a substantial challenge, explains Sabatini, who is also a Howard Hughes Medical Institute Investigator and professor of biology at MIT. "Evolution has reused proteins in many, many roles, and often proteins important in cancer are also important in other processes. Therefore, when you inhibit them you get more toxicities than you would want."

And while this study specifically focused on mTORC2's role in prostate cancer, inhibiting mTORC2 could lead to therapies for a wide range of cancers, in particular brain and ovarian cancer. Sabatini notes, "We have evidence that in other cancers where PTEN is lost, the same kind of paradigm may operate."

Even if the loss of PTEN functions similarly in other cancers, the researchers are far from developing an inhibitor. Scientists still need to better understand the mTORC2 protein complex structure and to investigate how fully developed malignant tumors react to blocking RICTOR.

Possibly the greatest hurdle will be to find a drug that actually works. "It's really hard to design an inhibitor. And because it's so challenging to do this pharmacologically, we wanted to make a genetic model first showing that we could inhibit this," says Guertin. "This study obviously has big implications, and that could generate interest now to move forward."

Provided by MIT

Explore further: Study reveals complex biology, gender differences, in kidney cancer

Related Stories

Study reveals complex biology, gender differences, in kidney cancer

October 13, 2017
A new study is believed to be the first to describe the unique role of androgens in kidney cancer, and it suggests that a new approach to treatment, targeting the androgen receptor (AR), is worth further investigation.

New insights on the addictions of tumors

October 6, 2017
Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) and UC San Diego have shown that tumors can ensure a more reliable nutrient supply by eliminating the p62 protein in surrounding stromal tissue. Specifically, ...

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Scientists discover complex axis of immune suppression exploited by cancers

September 19, 2017
A Ludwig Cancer Research study has uncovered a new mechanism by which cancer cells evade destruction by the immune system. The paper, led by Camilla Jandus of the Lausanne Branch of the Ludwig Institute for Cancer Research, ...

New test distinguishes 'tigers' from 'pussycats' in prostate cancer

February 28, 2017
A new test has been developed to make the vital distinction between aggressive and less harmful forms of prostate cancer, helping to avoid sometimes-damaging unnecessary treatment.

Recommended for you

CAR-T immunotherapy may help blood cancer patients who don't respond to standard treatments

October 20, 2017
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in St. Louis is one of the first centers nationwide to offer a new immunotherapy that targets certain blood cancers. Newly approved ...

Researchers pinpoint causes for spike in breast cancer genetic testing

October 20, 2017
A sharp rise in the number of women seeking BRCA genetic testing to evaluate their risk of developing breast cancer was driven by multiple factors, including celebrity endorsement, according to researchers at the University ...

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.