Migraine mice exhibit enhanced excitatory transmission at cortical synapses

March 11, 2009

New research is unraveling the complex brain mechanisms associated with disabling migraine headaches. The study, published by Cell Press in the March 12th issue of the journal Neuron, reveals that perturbation of the delicate balance between excitation and inhibition may make the brain more vulnerable to migraine attacks.

The brain mechanisms that cause debilitating headaches are not well understood. However, previous neuroimaging studies have suggested that the visual disturbance known as migraine aura is due to a phenomenon called (CSD). CSD is a wave of strong neuronal that slowly progresses across the , generating a transient increase in electrical signals followed by a long-lasting neural suppression. It has also been suggested that CSD may trigger mechanisms that initiate the .

Familial hemiplegic migraine (FHM) is a subtype of severe migraine with aura. Interestingly, recent animal studies have shown that mice carrying the mutation (FHM1) that causes human FHM are more susceptible to CSD. "Investigation of the cortical mechanisms that produce facilitation of CSD in the FHM mouse models may provide unique insights into the unknown mechanisms that lead to CSD susceptibility and initiate migraine attacks in human patients," offers senior study author Dr. Daniela Pietrobon from the Department of Biomedical Sciences at the University of Padova in Italy.

Dr. Pietrobon and colleagues found that and subsequent at cortical pyramidal cell synapses were increased in mice carrying the FHM mutation. Glutamate is the major excitatory neurotransmitter in the brain. The facilitation of induction and propagation of CSD in the FHM mice was completely eliminated when glutamate release was decreased to control levels. Importantly, in contrast with the enhanced excitatory neurotransmission, inhibitory neurotransmission was not altered in the migraine mice.

"Our findings provide direct evidence that enhanced glutamate release may explain the facilitation of CSD in the FHM mouse model. The differential effect of the FHM mutation at cortical excitatory and inhibitory synapses points to a perturbation of the excitation-inhibition balance and neuronal hyperactivity as the basis for episodic vulnerability to CSD ignition in migraine," explains Dr. Pietrobon.

Source: Cell Press

Related Stories

Recommended for you

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

Deletion of a stem cell factor promotes TBI recovery in mice

November 20, 2017
UT Southwestern molecular biologists today report the unexpected finding that selectively deleting a stem cell transcription factor in adult mice promotes recovery after traumatic brain injury (TBI).

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Theory: Flexibility is at the heart of human intelligence

November 19, 2017
Centuries of study have yielded many theories about how the brain gives rise to human intelligence. Some neuroscientists think intelligence springs from a single region or neural network. Others argue that metabolism or the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.