Scientists reveal mechanism that regulates cancer-causing gene

March 26, 2009,

Two University of Rhode Island scientists have revealed how a cancer causing protein is regulated by reactive oxygen species (ROS) -- a type of stress signal. Their findings provide new insight into how this protein normally behaves in human cells and may help in the design of drugs targeting specific cancers.

Doctoral student David J. Kemble and Professor Gongqin Sun in the URI Department of Cell and Molecular Biology are the first to provide a biochemical mechanism describing how certain protein tyrosine kinases sense and respond to oxidation. This sensing system was found to uniquely apply to two families of proteins implicated in numerous cancers: the Src and Fibroblast Growth Factor Receptor families of tyrosine kinases.

Their results were published online March 9 in the .

Src was the first enzyme identified as a cancer-causing gene in the early 1900's. For years scientists have been studying how the enzymes are expressed in - what do they do and what controls them.

According to Kemble and Sun, Src is a master regulator of cell function, controlling , division, and death. In normal cells, the function of Src is turned off, and it is turned on only when certain stimulatory signals activate it. When the regulatory mechanisms that control Src activity are disrupted, Src may be turned on all the time, which turns the into a cancer cell. Thus, it is crucial to understand how Src function is controlled.

Reactive oxygen species have long been viewed as damaging byproducts of oxygen-based metabolism. However, it is now recognized that ROS are produced when the cells are under growth stimulation, and they in turn regulate other cellular events.
Accumulating evidence indicates that ROS can directly regulate the function of Src function, and thus indirectly control many . Yet how Src responds to this regulation has remained elusive.

The URI scientists took a systematic approach, examined all the potential mechanisms, and identified the sensor that enables Src to respond to ROS regulation. They further found that the sensor is also present in several other similar enzymes, mostly in the FGFR family.

"Our results were surprising at first, given that the results contradict some reports in the literature," Kemble said. "But there was always a very clear answer to each question we asked. It was both unusual and exciting to see things progress as smoothly as it did."

According to Sun, this mechanism of regulation represents just a small piece of the large puzzle of how Src is controlled in the cells. "Src function is under the control of several different mechanisms; each one needs to fit in with the others to form a seamless regulatory system." Sun said.

Source: University of Rhode Island (news : web)

Related Stories

Recommended for you

More than 2,500 cancer cases a week could be avoided

March 23, 2018
More than 135,500 cases of cancer a year in the UK could be prevented through lifestyle changes, according to new figures from a Cancer Research UK landmark study published today.

Metastatic lymph nodes can be the source of distant metastases in mouse models of cancer

March 22, 2018
A study by Massachusetts General Hospital (MGH) investigators finds that, in mouse models, cancer cells from metastatic lymph nodes can escape into the circulation by invading nodal blood vessels, leading to the development ...

Could a pap test spot more than just cervical cancer?

March 22, 2018
Pap tests have helped drive down rates of cervical cancer, and a new study suggests they also could be used to detect other gynecologic cancers early.

Researchers identify compound to prevent breast cancer cells from activating in brain

March 22, 2018
Researchers at Houston Methodist used computer modeling to find an existing investigational drug compound for leukemia patients to treat triple negative breast cancer once it spreads to the brain.

Researchers examine role of fluid flow in ovarian cancer progression

March 22, 2018
New research from Virginia Tech is moving physicians closer to pinpointing a predictor of ovarian cancer, which could lead to earlier diagnosis of what is know as the "silent killer."

Probing RNA epigenetics and chromatin structures to predict drug resistance in leukemia

March 22, 2018
Drug resistance is a major obstacle to effective treatment for patients with cancer and leukemia. Epigenetic modifying drugs have been proven effective for some patients with hematologic malignancies, such as myelodysplastic ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.