Cracking the spatial memory code

March 12, 2009

Researchers have shown that they can tell where a person is "standing" within a virtual reality room on the basis of the pattern of activity in the brain alone. The findings, published online on March 12th in Current Biology, a Cell Press publication, offer compelling evidence that the hippocampus, a region of the brain critical to navigation, memory, and imagining future experiences, works in a structured and predictable way. That discovery is contrary to what many experts had previously suspected, according to the researchers.

"You can predict where someone is standing by reading the patterns in their ," said Demis Hassabis of University College London. "You can track what is purely an internal thought."

"With this kind of research, we are approaching the realm of mindreading," added Eleanor Maguire, also of University College London.

In the new study, Hassabis, Maguire, and their colleagues asked four participants to navigate to target locations within a while their brains were scanned with a imager (fMRI). fMRI measures related to neural activity in the brain. They then applied a sophisticated analytical procedure known as multivariate pattern classification to see if they could relate the pattern of brain activity to each individual's location in virtual space.

And it worked. The pattern they uncovered reflected the participants' memory for where they were, the researchers explained, since once they had reached their final destination, there were no visual cues to discern one target spot from another. The activity they examined spanned some two to five million of the 40 million or so cells in the hippocampus, Hassabis noted.

Earlier studies done primarily in rats had suggested that stored in the hippocampus had neuronal representations that were uniform and randomly distributed. But if that were the whole story, the predictions made in the new study would not have been possible.

Now that they have shown that such a predictable functional structure exists in the hippocampus, additional studies will seek to crack that neural code for other memories. Indeed, spatial representations of the type investigated in the study are thought to form the scaffold upon which memories of our personal experiences, known as episodic memories, are built.

"By showing it is possible to detect and discriminate between memories of adjacent spatial positions, our combination of non-invasive in vivo high-resolution fMRI and multivariate analyses opens up a new avenue for exploring episodic memory at the population level," the researchers wrote. "In the future it may be feasible to decode individual episodic memory traces from the activity of neuronal ensembles in the human hippocampus."

"We know that the hippocampus is critical for remembering our life experiences," Maguire said. This discovery "opens a whole world of possibility previously thought inaccessible to human brain imaging."

Source: Cell Press (news : web)

Related Stories

Recommended for you

Our memory shifts into high gear when we think about raising our children, new study shows

December 15, 2017
Human memory has evolved so people better recall events encountered while they are thinking about raising their offspring, according to a new study conducted by researchers at Binghamton University, State University of New ...

Offbeat brain rhythms during sleep make older adults forget

December 15, 2017
Like swinging a tennis racket during a ball toss to serve an ace, slow and speedy brainwaves during deep sleep must sync up at exactly the right moment to hit the save button on new memories, according to new UC Berkeley ...

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

Scientists chart how brain signals connect to neurons

December 14, 2017
Scientists at Johns Hopkins have used supercomputers to create an atomic scale map that tracks how the signaling chemical glutamate binds to a neuron in the brain. The findings, say the scientists, shed light on the dynamic ...

Journaling inspires altruism through an attitude of gratitude

December 14, 2017
Gratitude does more than help maintain good health. New research at the University of Oregon finds that regularly noting feelings of gratitude in a journal leads to increased altruism.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.