Cracking the spatial memory code

March 12, 2009

Researchers have shown that they can tell where a person is "standing" within a virtual reality room on the basis of the pattern of activity in the brain alone. The findings, published online on March 12th in Current Biology, a Cell Press publication, offer compelling evidence that the hippocampus, a region of the brain critical to navigation, memory, and imagining future experiences, works in a structured and predictable way. That discovery is contrary to what many experts had previously suspected, according to the researchers.

"You can predict where someone is standing by reading the patterns in their ," said Demis Hassabis of University College London. "You can track what is purely an internal thought."

"With this kind of research, we are approaching the realm of mindreading," added Eleanor Maguire, also of University College London.

In the new study, Hassabis, Maguire, and their colleagues asked four participants to navigate to target locations within a while their brains were scanned with a imager (fMRI). fMRI measures related to neural activity in the brain. They then applied a sophisticated analytical procedure known as multivariate pattern classification to see if they could relate the pattern of brain activity to each individual's location in virtual space.

And it worked. The pattern they uncovered reflected the participants' memory for where they were, the researchers explained, since once they had reached their final destination, there were no visual cues to discern one target spot from another. The activity they examined spanned some two to five million of the 40 million or so cells in the hippocampus, Hassabis noted.

Earlier studies done primarily in rats had suggested that stored in the hippocampus had neuronal representations that were uniform and randomly distributed. But if that were the whole story, the predictions made in the new study would not have been possible.

Now that they have shown that such a predictable functional structure exists in the hippocampus, additional studies will seek to crack that neural code for other memories. Indeed, spatial representations of the type investigated in the study are thought to form the scaffold upon which memories of our personal experiences, known as episodic memories, are built.

"By showing it is possible to detect and discriminate between memories of adjacent spatial positions, our combination of non-invasive in vivo high-resolution fMRI and multivariate analyses opens up a new avenue for exploring episodic memory at the population level," the researchers wrote. "In the future it may be feasible to decode individual episodic memory traces from the activity of neuronal ensembles in the human hippocampus."

"We know that the hippocampus is critical for remembering our life experiences," Maguire said. This discovery "opens a whole world of possibility previously thought inaccessible to human brain imaging."

Source: Cell Press (news : web)

Related Stories

Recommended for you

Touching helps build the sexual brain

September 21, 2017
Hormones or sexual experience? Which of these is crucial for the onset of puberty? It seems that when rats are touched on their genitals, their brain changes and puberty accelerates. In a new study publishing September 21 ...

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

Neuron types in brain are defined by gene activity shaping their communication patterns

September 21, 2017
In a major step forward in research, scientists at Cold Spring Harbor Laboratory (CSHL) today publish in Cell a discovery about the molecular-genetic basis of neuronal cell types. Neurons are the basic building blocks that ...

Highly precise wiring in the cerebral cortex

September 21, 2017
Our brains house extremely complex neuronal circuits whose detailed structures are still largely unknown. This is especially true for the cerebral cortex of mammals, where, among other things, vision, thoughts or spatial ...

Your neurons register familiar faces, whether you notice them or not

September 21, 2017
When people see an image of a person they recognize—the famous tennis player Roger Federer or actress Halle Berry, for instance—particular cells light up in the brain. Now, researchers reporting in Current Biology on ...

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.