Stem cells could halt osteoporosis, promote bone growth

March 4, 2009

While interferon gamma sounds like an outer space weapon, it's actually a hormone produced by our own bodies, and it holds great promise to repair bones affected by osteoporosis. In a new study published in the journal Stem Cells, researchers from the Research Institute of the McGill University Health Centre explain that tweaking a certain group of multipotent stem cells (called mesenchymal stem cells) with interferon (IFN) gamma may promote bone growth.

"We have identified a new pathway, centered on IFN gamma, that controls the bone remodelling process both in-vivo and in-vitro," explains Dr. Kremer, the study's lead author and co-director of the Musculoskeletal Axis of the McGill University Health Centre. "More studies are required to describe it more precisely, but we are hopeful that it could lead to a better understanding of the underlying causes of osteoporosis, as well as to innovative treatments."

The next step was to move to an animal model where IFN gamma effect is blocked by inactivating its receptor, a model called IFN gamma receptor knock-out. Bone density tests, comparable to those used to diagnose people with osteoporosis, were conducted. The results revealed that these animals have significantly lower bone mass than their healthy counterparts In addition, their mesenchymal stem cells have a decreased ability to make bone. "These findings confirm that IFN gamma is an integral factor for mesenchymal stem cells' differentiation into osteoblasts also in-vivo," says Dr. Kremer.

Until now, IFN gamma has been mostly used as an agent to prevent infections and to reinforce the immune system from illnesses such as cancer. These findings provide hope that IFN gamma itself, or another molecule involved in its pathway, could soon also become an efficient drug-target for an antidote for osteoporosis.

More information: "Autocrine Regulation of Interferon γ in Mesenchymal Stem Cells Plays a Role in Early Osteoblastogenesis," published in the journal Stem Cells, was authored by Richard Kremer of the McGill University Health Centre, Gustavo Duque, Dao Chao Huang, Michael Macoritto, Xian Fang Yang of the McGill University Faculty of Medicine and Centre for Bone and Periodontal Research and Daniel Rivas of the McGill-affiliated Lady Davis Institute for Medical Research.

Source: McGill University Health Centre

Explore further: New method creates liver bioscaffolds with intact ECM for reseeding and transplantation

Related Stories

New method creates liver bioscaffolds with intact ECM for reseeding and transplantation

October 13, 2017
Researchers have reported a method for successfully removing the cellular material from whole human livers while retaining the organ's three-dimensional structure and extracellular matrix (ECM) components. They further demonstrated ...

Team creates functional, stem-cell-derived small bowel segments

October 10, 2017
Using human induced pluripotent stem cells (iPSCs), a Massachusetts General Hospital research team has bioengineered functional small intestine segments that, when implanted into rats, were capable of deliver nutrients into ...

Areas of glioblastoma tumors correlate with separate subtypes of glioma stem cells

October 10, 2017
A new study published in the Oct. 9 issue of the journal Nature Medicine demonstrates, for the first time, that glioblastoma (GBM), the most common and most lethal brain tumor, is driven by two distinct subsets of cancer ...

Better mini brains could help scientists identify treatments for Zika-related brain damage

October 10, 2017
UCLA researchers have developed an improved technique for creating simplified human brain tissue from stem cells. Because these so-called "mini brain organoids" mimic human brains in how they grow and develop, they're vital ...

Growing human brain cells in the lab

October 10, 2017
Li Gan, PhD, wants to find treatments to help patients with Alzheimer's disease. Like most researchers, she's hit a few major roadblocks.

Scientists pinpoint surprising origin of melanoma

October 12, 2017
Led by Jean-Christophe Marine (VIB-KU Leuven), a team of researchers has tracked down the cellular origin of cutaneous melanoma, the deadliest form of skin cancer. The team was surprised to observe that these very aggressive ...

Recommended for you

Large variety of microbial communities found to live along female reproductive tract

October 18, 2017
(Medical Xpress)—A large team of researchers from China (and one each from Norway and Denmark) has found that the female reproductive tract is host to a far richer microbial community than has been thought. In their paper ...

Study of what makes cells resistant to radiation could improve cancer treatments

October 18, 2017
A Johns Hopkins University biologist is part of a research team that has demonstrated a way to size up a cell's resistance to radiation, a step that could eventually help improve cancer treatments.

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

A new compound targets energy generation, thereby killing metastatic cells

October 17, 2017
Cancer can most often be successfully treated when confined to one organ. But a greater challenge lies in treating cancer that has metastasized, or spread, from the primary tumor throughout the patient's body. Although immunotherapy ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

New method to measure how drugs interact

October 17, 2017
Cancer, HIV and tuberculosis are among the many serious diseases that are frequently treated with combinations of three or more drugs, over months or even years. Developing the most effective therapies for such diseases requires ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.