Blood testing, mosquito style

April 24, 2009

A skin patch could one day provide a less-invasive alternative for diabetics who need to take regular samples of their own blood to keep glucose levels in check. The common method of drawing blood from fingertips and using glucose testing strips and metres can be painful, inconvenient and time-consuming.

Electrical engineers at the Schulich School of Engineering at the University of Calgary have patented a device called the Electronic Mosquito. The patch is approximately the size of a deck of cards and contains four micro-needles that "bite" sequentially at programmed intervals. The needles are electronically controlled to penetrate the skin deep enough to draw blood from a capillary, but not deep enough to hit a nerve. This means patients would experience little or no pain. The patch could be worn anywhere on the body where it could obtain accurate readings of capillary blood.

Biomedical engineers at the University of Calgary's Schulich School of Engineering have patented a device to quickly and painlessly test blood glucose levels. The Electronic Mosquito is based on the biting mechanism of a mosquito. Credit: University of Calgary

A sensor in each cell of the e-Mosquito measures sugar levels in the blood. This data can then be sent wirelessly to a remote device such a computer or a monitoring instrument worn on the wrist. The system could even be connected to an alarm to alert patients or doctors when enter the danger zone.

"This is a dramatic improvement over manual poking, particularly for children and elderly patients," says Martin Mintchev, director of the Low Frequency Instrumentation Lab at the Schulich School of Engineering. "Our approach is radically different and offers a reliable, repeatable solution with the minor inconvenience of wearing something similar to an adhesive bandage."

Mintchev spent three years designing the e-Mosquito along with Karan Kaler, director of the Schulich School's Bio-Micro Electromechanical Systems (MEMS) Laboratory. Their next step is to make the components of the e-Mosquito smaller to fit more needles on the patch. Currently, there are four needles, so the patch would need to be changed at least once a day. Adding more needles would allow patients to wear the patch for longer periods of time or test their more frequently, even while they're asleep.

Eventually, Mintchev and Kaler hope to integrate a pump system so insulin injections can also become autonomous based on data from the e-Mosquito, thus converting the device into an external artificial pancreas.

"It's important to find an industry partner for this project," says David Reese, project manager with University Technologies International, the university's technology transfer, commercialization and incubation centre that works with U of C researchers to commercialize their technologies. "Industry has the resources and expertise to speed up the process of product development and bring this technology to market for the benefit of patients."

Diabetes has been described as a global epidemic. Approximately 246 million people around the world are affected by the disease. More than two million Canadians have diabetes, a number that is increasing because of the aging population and rising obesity rates, according to the Canadian Diabetes Association.

Source: University of Calgary (news : web)

Related Stories

Recommended for you

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

In lab research, scientists slow progression of a fatal form of muscular dystrophy

December 8, 2017
In a paper published in the Nature journal Scientific Reports, Saint Louis University (SLU) researchers report that a new drug reduces fibrosis (scarring) and prevents loss of muscle function in an animal model of Duchenne ...

Double-blind study shows HIV vaccine not effective in viral suppression

December 7, 2017
(Medical Xpress)—A large team of researchers from the U.S. and Canada has conducted a randomized double-blind study of the effectiveness of an HIV vaccine and has found it to be ineffective in suppressing the virus. In ...

Time matters: Does our biological clock keep cancer at bay?

December 7, 2017
Our body has an internal biological or "circadian" clock, which cycles daily and is synchronized with solar time. New research done in mice suggests that it can help suppress cancer. The study, publishing 7 December in the ...

Novel harvesting method rapidly produces superior stem cells for transplantation

December 7, 2017
A new method of harvesting stem cells for bone marrow transplantation - developed by a team of investigators from the Massachusetts General Hospital (MGH) Cancer Center and the Harvard Stem Cell Institute - appears to accomplish ...

Inhibiting TOR boosts regenerative potential of adult tissues

December 7, 2017
Adult stem cells replenish dying cells and regenerate damaged tissues throughout our lifetime. We lose many of those stem cells, along with their regenerative capacity, as we age. Working in flies and mice, researchers at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.