Research defines neurons that control sociability in worms

April 10, 2009
Social surgery. By using a laser to kill the RMG neurons in social strains of C. elegans, researchers showed that worms lacking this “social brain” failed to congregate (right) compared to those with it (left).

(PhysOrg.com) -- Ants colonize. Fish shoal. Flamingos flock and caribou herd. Earth is populated by inherently social beings. Even lowly worms seek out the benefits of companionship. New research at The Rockefeller University has dissected the social proclivities of a model worm, identifying a single type of neuron — RMG — that “decides” whether these worms will mingle with their fellows or keep to themselves.

“We can think of RMG as the world’s simplest social brain, as the place where information relevant to the worm’s decision to hang out with other worms converges, and the decision is made,” says Cori Bargmann, head of the Laboratory of Neural Circuits and Behavior at Rockefeller, who led the research. The work was published this week in Nature.

Even the world’s simplest social brain, one pair of only 302 neurons in Caenorhabditis elegans’s compact nervous system, is rather complicated, it turns out. A host of genetic and environmental variables contribute to the decision-making. RMG is the central integrating hub of a network of that feeds the worm readings of its environment such as whether food is available, how much oxygen is in the air and other factors known to influence gregarious behavior. Only when the right conditions are met will the animals congregate. Evan Macosko, an M.D.-Ph.D. student in the Bargmann lab, found that the crucial trigger for aggregation is a switch in the response to other worms’ pheromones. RMG and a pheromone-detecting neuron named ASK are the essential players in the “hub-and-spoke” circuit that drives .

Pheromones are known to bring creatures together in many species, from insects such as ants and moths to mammals including prairie voles and possibly even people. In social strains of C. elegans, a transparent, one-millimeter-long roundworm, the same is true. Bargmann determined that ASK, known to be involved in the attraction of the relatively rare males to the more common hermaphrodites, senses pheromones. ASK is relatively inactive in solitary hermaphrodites, which ignore or avoid pheromones. However, in social worms, RMG amplifies the signal from pheromone-sensitive ASK neurons, driving the worms toward each other and increasing sociability.

The hub-and-spoke circuit, Bargmann says, is a relatively rare but recurring theme in the map of C. elegans’s nervous system known as its wiring diagram. The neurons connected in such circuits primarily communicate electrically across gap junctions rather than through the more common connections of chemical synapses. Bargmann believes that hub-and-spoke circuits could be the integrative sites that coordinate different characteristic behaviors in worms and other species.

RMG is the hub of the worm’s social brain, and also a hub of genetic differences in social behavior. The activity of one receptor gene in the worm’s brain determines whether hermaphrodite will be relatively social, congregating at a moment’s notice, or relatively solitary. The receptor gene, npr-1, sets the activity level of RMG neurons, so genes and environment act on the same target when modifying social behavior.

“The decision to congregate gets made in certain environments and not in others and in certain genotypes and not in others,” says Bargmann, who is also a Howard Hughes Medical Institute investigator. “Aggregation is a true regulated behavior that’s an option, not a requirement. Behavior is all about choosing between your options based on your genes, your experience and your current situation.”

More information: Nature online: April 6, 2009. A hub-and-spoke circuit drives attraction and social behaviour in C. elegans, Evan Z. Macosko, Navin Pokala, Evan H. Feinberg, Sreekanth H. Chalasani, Rebecca A. Butcher, Jon Clardy and Cornelia I. Bargmann

Provided by Rockefeller University (news : web)

Related Stories

Recommended for you

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.