Nicotine may have more profound impact than previously thought

April 3, 2009
Researchers have found that the alpha-7 receptor, a site known to bind with nicotine, interacts with 55 different proteins. Nicotine may affect bodily processes -- and perhaps the actions of other commonly used drugs -- more broadly than was previously thought. Credit: Credit: Hawrot Lab/Brown University

Nicotine isn't just addictive. It may also interfere with dozens of cellular interactions in the body, new Brown University research suggests.

Conversely, the data could also help scientists develop better treatments for various diseases. Pharmaceutical companies rely on basic research to identify new cellular interactions that can, in turn, serve as targets for potential new drugs.

"It opens several new lines of investigation," said lead author Edward Hawrot, professor of molecular science, molecular pharmacology, physiology and biotechnology at Brown University.

Hawrot's research is highlighted in a paper published April 3 in the . He and a team that included graduate students William Brucker and Joao Paulo set out to provide a more basic understanding of how affects the process of cell communication through the mammalian .

The Brown University researchers looked specifically at the alpha-7 nicotinic acetylcholine receptor in mouse . A very similar receptor exists in humans. The alpha-7 receptor is the most enigmatic of the so-called "nicotinic" receptors, so named because nicotine binds to them when it is introduced into the body. Most receptors are on the surface of cells and are sensitive to small signaling molecules such as the neurotransmitter acetylcholine, which is the naturally occurring signal the body uses to activate alpha-7 receptors.

Their discovery: 55 proteins were found to interact with the alpha-7 nicotinic receptor. Scientists had not previously known of those connections.

"This is called a "nicotinic" receptor and we think of it as interacting with nicotine, but it likely has multiple functions in the brain," Hawrot said. "And in various, specific regions of the brain this same alpha-7 receptor may interact with different proteins inside neurons to do different things."

One in particular — the G alpha — was among the most unexpected proteins to be identified in the study, as it is usually associated with a completely different class of receptors (the eponymous G-protein coupled receptors (GPCRs).

This finding is significant because G alpha proteins are involved in many different biochemical and signaling processes throughout the brain and the rest of the body. body.

An example of the importance of G alpha proteins: 40 percent of all currently used therapeutic drugs target a member of the large GPCR family of receptors.

The new finding suggests that the alpha-7 receptors have a much broader role in the body than previously suspected and that the newly identified associated proteins could also be affected when nicotine binds to the alpha-7 receptor.

Nicotine may affect bodily processes — and perhaps the actions of other commonly used drugs — more broadly than was previously thought.

This advance could lead to the development of new treatments to combat smoking addiction. At the same time, the finding could also have future implications for diseases such as schizophrenia, Hawrot said.

Recent genetic studies have suggested that some cases of schizophrenia are associated with deletions where a block of genes, including the gene for the alpha-7 receptor, is missing. Hawrot said the connection, while not conclusive, offers hope for new strategies in the development of treatments for those suffering from the disorder.

To conduct their study, Hawrot's lab looked at mice genetically engineered by other researchers to lack the alpha-7 nicotinic acetylcholine receptor. Those mice were compared with normal mice, so the difference in receptor-associated proteins could be highlighted.

Source: Brown University (news : web)

Related Stories

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

Cinnamon turns up the heat on fat cells

November 21, 2017
New research from the University of Michigan Life Sciences Institute has determined how a common holiday spice—cinnamon—might be enlisted in the fight against obesity.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

cmn
not rated yet Apr 04, 2009
This isn't surprising, as anyone that has smoked for awhile than quit will notice a change in bodily function after a couple weeks.
E_L_Earnhardt
not rated yet Apr 04, 2009
And nicotine sprays on all our vegitables just before harvest?? Pipe smokers out-live cigarette smokers!? (They even outlive non-smokers!) Electron
speed & spin,("HEAT") increases mitosis rate! COOL the cells and the cancer stops!
el_gramador
not rated yet Apr 04, 2009
Okay, just provide a vector that doesn't kill surrounding cells and you are golden.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.