A potential new target for treatment of hormone refractory prostate cancer

April 6, 2009,

A new study identifies a protein that modifies the androgen receptor (AR) and influences its ability to regulate target genes linked with the progression of prostate cancer. The research, published by Cell Press in the April 7th issue of the journal Cancer Cell, may also drive creation of new strategies for the treatment of advanced prostate cancer that no longer responds to traditional anti-hormone therapies.

The AR is an important mediator for the development and progression of , including the progression to the aggressive and often lethal androgen-independent form of the disease. "Androgen ablation therapy is the most common treatment for advanced prostate cancer," offers senior study author, Dr. Yun Qiu from the University of Maryland School of Medicine. "However, many patients inevitably develop deadly recurrent cancers, which no longer respond to androgen blockade and are resistant to current therapy."

To better understand mechanisms associated with advanced prostate cancer, Dr. Qiu and colleagues performed a screen designed to search for proteins that interact with the AR in hormone-refractory . The researchers identified RNF6 as an AR associated protein and demonstrated that RNF6 induced ubiquitination of the AR and promoted AR transcriptional activity. Ubiquitination is a common protein modification that mediates a diverse range of cellular activities. One of the best known functions of ubiquitination is to promote protein degradation. However, ubiquitination of AR by RNF6 appeared to have a stabilizing effect on AR protein.

Importantly, inhibition of RNF6 or interference with ubiquitination of AR altered expression of a specific group of AR target genes and abrogated recruitment of AR and its required coactivators to androgen-responsive regulatory regions in these genes. The researchers went on to show that expression of RNF6 was increased in human prostate cancer tissues that do not respond to androgen ablation and is required for prostate tumor growth under androgen depleted conditions.

Taken together, the findings implicate RNF6 as an important regulator of AR transcriptional activity. "Our work suggests that ubiquitination of AR, and possibly other transcription factors, may function as the scaffold for cofactor recruitment to modulate transcriptional activity and specificity," concludes Dr. Qiu. "Targeting components of the ubiquitination machinery, such as RNF6, may potentially be effective in treatment of advanced prostate cancer."

Source: Cell Press (news : web)

Related Stories

Recommended for you

Removing the enablers: Reducing number of tumor-supporting cells to fight neuroblastoma

April 24, 2018
Investigators at the Children's Center for Cancer and Blood Diseases at Children's Hospital Los Angeles provide preclinical evidence that the presence of tumor-associated macrophages—a type of immune cell—can negatively ...

Technology used to map Mars now measuring effect of treatment on tumours

April 24, 2018
A machine learning approach for assessing images of the craters and dunes of Mars, which was developed at The University of Manchester, has now been adapted to help scientists measure the effects of treatments on tumours.

New test could tell doctors whether patients will respond to chemotherapy

April 24, 2018
Less than half the patients diagnosed with cancer respond favorably to chemotherapy, but a new method for testing how patients will respond to various drugs could pave the way for more personalized treatment.

Vitamin A derivative selectively kills liver cancer stem cells

April 23, 2018
Acyclic retinoid, an artificial compound derived from vitamin A, has been found to prevent the recurrence of hepatocellular carcinoma (HCC), the most common form of liver cancer. Now, in research published in Proceedings ...

Scientists create better laboratory tools to study cancer's spread

April 23, 2018
Cancer that has spread, or metastasized, from its original site to other tissues and organs in the body is a leading cause of cancer death. Unfortunately, research focused on metastatic disease has been limited by a lack ...

The role of 'extra' DNA in cancer evolution and therapy resistance

April 23, 2018
Glioblastoma (GBM) is the most common and aggressive form of brain cancer. Response to standard-of-care treatment is poor, with a two-year survival rate of only 15 percent. Research is beginning to provide a better understanding ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.