An Animal Model for Schizophrenia Identifies a Novel Approach for Treating Cognitive Impairments

June 9, 2009

Researchers have been seeking a safe and effective way to treat cognitive impairments associated with schizophrenia by enhancing N-methyl-D-aspartate (NMDA) glutamate receptors. Functional deficits in NMDA receptors may contribute to the underlying neurobiology of this disorder. The first generation of studies trying to stimulate NMDA receptors administered large amounts of substances, like glycine or D-serine, which indirectly enhance NMDA receptor function. While there were some positive reports of efficacy, findings across studies were more inconsistent than was hoped.

New approaches following this line of research are just beginning to be tested in patients. For example, several pharmaceutical companies are studying drugs that block the glycine transporter (GlyT1) and thereby raise synaptic glycine levels.  A new study in Biological Psychiatry, published by Elsevier, by Dr. Kenji Hashimoto and colleagues may represent a “next step,” which is to prevent the inactivation of D-serine by the enzyme D-amino acid oxidase (DAAO).  The authors found that this approach enhances the efficacy of D-serine in an for deficits in NMDA glutamate receptor function.

To put it more simply, although D-serine is used as a treatment for schizophrenia, it is metabolized by DAAO, reducing its availability in the brain.  So, using an animal model of schizophrenia, these scientists co-administered D-serine and a compound that blocks the effects of DAAO.  This increased the levels of D-serine in the mice and therefore its effectiveness in treating the abnormal behaviors in this animal model that may be relevant to schizophrenia.

“We still do not have effective treatments that specifically target the cognitive and functional impairments associated with schizophrenia.  These findings are very interesting because there is a continued sense that we have not yet captured the therapeutic promise associated with the glycine site of the NMDA receptor.  GlyT1 blockers and DAAO inhibitors may be important new clinical research tools,” comments John Krystal, M.D., Editor of Biological Psychiatry.

Further research is still needed to see whether these findings can be extended to humans, but it is hoped that this combination therapy proves to be a novel and effective treatment of .

Source: Elsevier

Related Stories

Recommended for you

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.