Heart disease: Research off the beating patch

July 21, 2009
Research group leader Steven Goldman, MD, (right) and pre-doctoral Fellow Jordan Lancaster look at the microscopic image of a synthetic fiber mesh with beating heart muscle cells. Credit: University of Arizona

It is an amazing sight: What looks like a tiny beating heart is actually a piece of synthetic, gauze-like mesh, barely the size of a fingernail, floating in a Petri dish. And yet it keeps squeezing away, nice and rhythmically.

Researchers at The University of Arizona's Sarver Heart Center and the Southern Arizona Veterans Administration (SAVAHCS) have come a step closer to repairing hearts damaged by a heart attack or weakened by .

"We have developed a delivery system that allows us to introduce living, healthy heart muscle cells into damaged areas of the heart in a way that is much more efficient than the conventionally practiced method of injecting cells into heart tissue," says study leader Steven Goldman, MD.

Unlike most existing approaches, in which cardiac cells with no supporting structure are injected into heart tissue, Goldman's group uses a patch (Theregen Inc. San Francisco) made from microscopically thin fibers that serve as a scaffold to which the cells can adhere.

The group's latest achievements have attracted the attention of the American Heart Association, who picked the research as one of the most noteworthy achievements of this year's Cardiovascular Sciences Annual Conference in Las Vegas, Nev.

"Ultimately, we hope to use our system in patients with chronic heart failure and, possibly, to prevent heart failure in patients who had a heart attack," says Jordan Lancaster, BS, a pre-doctoral fellow in Dr. Goldman's lab who will present the research at the meeting on July 21, 2009.

Dr. Goldman and his team discovered that when they "seed" a vicryl mesh patch with a sufficiently large number of (2.5 million or more), the cells start behaving just like their counterparts in the real organ: They contract synchronously at about 70 beats per minute even without any outside stimulation.

"Our work shows that we can put living cells onto a biodegradable, 3-dimensional scaffold in a way that not only allows them to survive, but to spontaneously beat in a coordinated fashion," says Lancaster.

In addition to demonstrating the feasibility of using a synthetic mesh as a means to deliver living heart cells into a diseased heart, the group has already shown that the patch improves left ventricular function and blood flow when implanted into damaged heart muscle in a rat model of myocardial infarction.

Dr. Goldman believes that the construct developed in his lab provides a better vehicle to introduce cells into damaged heart muscle than conventional cell transplantation techniques, in which cells are injected directly into the heart.

"I think the main reason for the disappointing results people have seen with those clinical trials is that the cells end up in an environment that is not optimal for them to thrive in. Scar tissue offers poor blood supply and weak structural support for new cells to attach, survive and grow. Our patch offers just what cardiac muscle cells need: structural support, increased blood supply and chemicals secreted by the supporting cells on the patch that help the muscle cells grow and function."

Source: University of Arizona (news : web)

Related Stories

Recommended for you

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

In lab research, scientists slow progression of a fatal form of muscular dystrophy

December 8, 2017
In a paper published in the Nature journal Scientific Reports, Saint Louis University (SLU) researchers report that a new drug reduces fibrosis (scarring) and prevents loss of muscle function in an animal model of Duchenne ...

Double-blind study shows HIV vaccine not effective in viral suppression

December 7, 2017
(Medical Xpress)—A large team of researchers from the U.S. and Canada has conducted a randomized double-blind study of the effectiveness of an HIV vaccine and has found it to be ineffective in suppressing the virus. In ...

Time matters: Does our biological clock keep cancer at bay?

December 7, 2017
Our body has an internal biological or "circadian" clock, which cycles daily and is synchronized with solar time. New research done in mice suggests that it can help suppress cancer. The study, publishing 7 December in the ...

Novel harvesting method rapidly produces superior stem cells for transplantation

December 7, 2017
A new method of harvesting stem cells for bone marrow transplantation - developed by a team of investigators from the Massachusetts General Hospital (MGH) Cancer Center and the Harvard Stem Cell Institute - appears to accomplish ...

Inhibiting TOR boosts regenerative potential of adult tissues

December 7, 2017
Adult stem cells replenish dying cells and regenerate damaged tissues throughout our lifetime. We lose many of those stem cells, along with their regenerative capacity, as we age. Working in flies and mice, researchers at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.