Scientists locate disease switches

A team of scientists from the University of Copenhagen and the Max Planck Institute in Germany, has identified no less than 3,600 molecular switches in the human body. These switches, which regulate protein functions, may prove to be a crucial factor in human aging and the onset and treatment of diseases such as cancer, Alzheimer's disease and Parkinson's disease. The results of the team's work have been published in the current edition of the journal Science.

The team, led by Professor Matthias Mann of Novo Nordisk Center for Protein Research at the University of Copenhagen and the Max Planck Institute for Biochemistry in Germany, have detected 3,600 acetylation switches in 1,750 different proteins.

"This is more than just a technological achievement, it has also expanded the number of known acetylation switches by a factor of six, and it gives us for the first time a comprehensive insight into this type of protein modification," says Professor Mann.

A given protein can perform more than one task, and how it behaves is regulated by adding a small molecule that acts as a 'switch' which can turn on the different tasks. Acetylation is essential for cells' ability to function normally. Defective protein regulation plays a role in ageing and the development of diseases such as cancer, Parkinson's and Alzheimer's.

"With the new mapping, we can now begin to study and describe how acetylation switches respond to medications that could repair the defects on them. It can have a major impact on medical care," says Professor Mann, adding that medications to repair the damaged protein regulation are already showing promising in the treatment of cancer.

Cooperating proteins

The team also discovered that acetylation modification occurs primarily on proteins that work together, and that these switches have much greater consequences for the organism's function than previously thought. In one example, the function of Cdc28, an important growth in yeast, can be disrupted by the addition of an acetylation button, ultimately affecting the organism's ability to survive.

The results of the team's research were published in the 17 July 2009 edition of Science.

Source: University of Copenhagen


Explore further

Modification of mutant huntingtin protein increases its clearance from brain cells

Citation: Scientists locate disease switches (2009, July 17) retrieved 21 September 2021 from https://medicalxpress.com/news/2009-07-scientists-disease.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
 shares

Feedback to editors