Study explores how life experiences contribute to the biological changes of Alzheimer's

October 1, 2009

The National Institutes of Health has awarded Rush University Medical Center approximately $5.5 million in grants to study how epigenetic changes - chemical modifications to genes that result from diet, aging, stress, or environmental exposures - define and contribute to memory formation and cognitive decline. Results from the studies could profoundly alter the way the medical community understands, diagnoses, and treats Alzheimer's disease, according to the researchers.

Every cell in the body has the same genetic information. What makes cells, tissues and organs different are the epigenetic modifications, or marks, that turn genes on or off.

Researchers at the Rush Center hypothesize that the brain uses epigenetic marks to store memory and are exploring the relationship between life experiences known to affect memory abilities and changes in the epigenetic marks.

The study is motivated, in large part, from the center's work with two large, longitudinal studies of aging and dementia conducted over the past 15 years. Researchers at Rush have identified a wide range of life experiences that are related to loss of cognitive function and a clinical diagnosis of Alzheimer's disease but are not associated with the neuropathologic hallmarks of the disease, the plaques and tangles that accumulate in the brain. These life experiences include socioeconomic status, , and cognitive, physical, and social activities across the life span.

"We have found that while cognitive decline in old age often results from one or more of three common brain diseases, Alzheimer's disease, cerebrovascular disease and Lewy body disease, these conditions only account for about 20% of the variance of cognition in older persons," said Dr. David Bennett, director of the Rush Alzheimer's Disease Center and principal investigator for the studies. "Thus, factors other than must make important contributions to cognitive function in old age."

One of those factors may be epigenetic marks. There are currently about 30 known proteins that turn genes on and off. Since it is known that life experiences can affect which proteins are produced, Bennett and his colleagues want to know if the brain is using epigenetic marks as a means of linking experiential factors to long term memory storage.

"A memory trace involves protein production. It is hard to change genes, but it may be easier to manipulate the opening and closing of genes to impact memory," said Bennett.

Researchers will conduct epigenome-wide DNA methylation scans and epigenome-wide histone acetylation scans on from participants in two large, longitudinal studies of aging and dementia: the Rush Memory and Aging Project and the Religious Orders Study. These studies include the participation of more than 2,400 older adults from across the country who have agreed to medical and psychological evaluation each year and brain donation after death. Brain tissue is already available from more than 750 participants, and the epigenomic studies will eventually examine brain tissue from more than 1000 participants.

The results of these scans will be used to explore the relation of epigenetic alterations to age-related cognitive decline and point to potential DNA methylation sites and histone modifications linking life experiences to and dementia. Understanding these relationships offer the possibility of therapeutic intervention because a number of drugs are known to affect epigenetic modifications.

In addition, Rush researchers have already been funded by the NIH to conduct a whole genome scan on participants from both studies. Thus, they will be able to examine the interaction between genetic variation and epigenetic marks on cognition and life experiences. Rush is collaborating with the Broad Institute of MIT and Harvard Universty to conduct the genome-wide genotyping and epigenome wide scans.

Recent major advances in technology allow the scientists to look at one million genetic variations in a single human's DNA using a simple blood sample and tens of thousands of epigenomic marks across the genome with a small piece of brain tissue.

A third set of analyses will examine the relation of epigenetic marks to measures of the pathology of Alzheimer's disease, cerebrovascular disease and Lewy body disease found in the brain.

"Together, this integrative study represents a timely, novel and powerful approach that will transform our understanding of epigenetic contributions to age-related loss of cognition and dementia," said Bennett. "We are not aware of any other studies of older men and women of comparable size, relevant life experience, clinical data, and follow-up and autopsy rates, in which these analyses can be performed.

Source: Rush University Medical Center (news : web)

Related Stories

Recommended for you

Newly discovered viral marker could help predict flu severity in infected patients

October 20, 2017
Flu viruses contain defective genetic material that may activate the immune system in infected patients, and new research published in PLOS Pathogens suggests that lower levels of these molecules could increase flu severity.

H7N9 influenza is both lethal and transmissible in animal model for flu

October 19, 2017
In 2013, an influenza virus that had never before been detected began circulating among poultry in China. It caused several waves of human infection and in late 2016, the number of people to become sick from the H7N9 virus ...

Flu simulations suggest pandemics more likely in spring, early summer

October 19, 2017
New statistical simulations suggest that Northern Hemisphere flu pandemics are most likely to emerge in late spring or early summer at the tail end of the normal flu season, according to a new study published in PLOS Computational ...

Migraines may be the brain's way of dealing with oxidative stress

October 19, 2017
A new perspective article highlights a compelling theory about migraine attacks: that they are an integrated mechanism by which the brain protects and repairs itself. Recent insightful findings and potential ways to use them ...

New insights into herpes virus could inform vaccine development

October 18, 2017
A team of scientists has discovered new insights into the mechanisms of Epstein-Barr virus (EBV) infection, as well as two antibodies that block the virus' entry into cells. The findings, published in Proceedings of the National ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.